Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 105(3): 2201-2214, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34998546

ABSTRACT

The objective of this study was to determine growth, feed intake, and feed efficiency of postbred dairy heifers with different genomic residual feed intake (RFI) predicted as a lactating cow when offered diets differing in energy density. Postbred Holstein heifers (n = 128, ages 14-20 mo) were blocked by initial weight (high, medium-high, medium-low, and low) with 32 heifers per block. Each weight block was sorted by RFI (high or low) to obtain 2 pens of heifers with high and low genomically predicted RFI within each block (8 heifers per pen). Low RFI heifers were expected to have greater feed efficiency than high RFI heifers. Dietary treatments consisted of a higher energy control diet based on corn silage and alfalfa haylage [HE; 62.7% total digestible nutrients, 11.8% crude protein, and 45.6% neutral detergent fiber; dry matter (DM) basis], and a lower energy diet diluted with straw (LE; 57.0% total digestible nutrients, 11.7% crude protein, and 50.1% neutral detergent fiber; DM basis). Each pen within a block was randomly allocated a diet treatment to obtain a 2 × 2 factorial arrangement (2 RFI levels and 2 dietary energy levels). Diets were offered in a 120-d trial. Dry matter intake by heifers was affected by diet (11.0 vs. 10.0 kg/d for HE and LE, respectively) but not by RFI or the interaction of RFI and diet. Daily gain was affected by the interaction of RFI and diet, with low RFI heifers gaining more than high RFI heifers when fed LE (0.94 vs. 0.85 kg/d for low and high RFI, respectively), but no difference for RFI groups when fed HE (1.16 vs. 1.19 kg/d for low and high RFI, respectively). Respective feed efficiencies were improved for low RFI compared with high RFI heifers when fed LE (10.6 vs. 11.8 kg of feed DM/kg of gain), but no effect of RFI was found when fed HE (9.4 vs. 9.5 kg of DM/kg of gain for high and low RFI, respectively). No effect of RFI or diet on first-lactation performance through 150 DIM was observed. Based on these results, the feed efficiency of heifers having different genomic RFI may be dependent on diet energy level, whereby low RFI heifers utilized the LE diet more efficiently. The higher fiber straw (LE) diet controlled intake and maintained more desirable heifer weight gains. This suggests that selection for improved RFI in lactating cows may improve feed efficiency in growing heifers when fed to meet growth goals of 0.9 to 1.0 kg of gain/d.


Subject(s)
Animal Feed , Lactation , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Eating , Female , Genomics
2.
J Dairy Sci ; 102(5): 4041-4050, 2019 May.
Article in English | MEDLINE | ID: mdl-30852010

ABSTRACT

The objective of this study was to determine the growth, feed efficiency, and manure excretion of prebred dairy heifers with differing predicted genomic residual feed intakes (RFI) when offered diets differing in energy density. Prebred Holstein heifers (n = 128, ages 4 to 8 mo) were blocked by weight (low, medium-low, medium-high, or high) with 32 heifers per block. Heifers in each weight block were grouped by RFI and randomly assigned to obtain 2 pens of high (HRFI) and 2 pens of low RFI (LRFI) heifers within each block (8 heifers/pen). Heifers with LRFI were hypothesized to have greater feed efficiency than HRFI heifers. Dietary treatments were a high-energy diet (HE; 66.6% total digestible nutrients, 14.0% crude protein, and 36.3% neutral detergent fiber, dry matter basis) and a low-energy diet (LE; 63.8% total digestible nutrients, 13.5% crude protein, and 41.2% neutral detergent fiber, dry matter basis). Each pen of heifers was randomly assigned to a treatment to obtain a 2 × 2 factorial arrangement (2 RFI levels × 2 diet energy densities). Diets were offered in a 120-d trial. Dry matter intake was not affected by diet, RFI, or their interaction. Average daily gain (ADG) was affected by diet, with heifers fed HE having greater ADG than heifers fed LE. In addition, RFI affected ADG, with LRFI heifers having greater ADG than HRFI heifers, whereas the interaction of RFI and diet was not significant. Feed efficiency was improved for heifers fed the HE diet, but it was not affected by RFI or the interaction of RFI and diet. Overall, feed efficiency of prebred heifers was not dependent on predicted genomic RFI, because the greater ADG of LRFI heifers was accompanied by slightly higher dry matter intake. Feed efficiency of heifers was reduced when heifers were fed the LE diet, but this resulted in more optimal ADG compared with the HE diet fed for ad libitum intake.


Subject(s)
Animal Feed , Cattle/physiology , Diet/veterinary , Animal Feed/analysis , Animals , Body Weight , Cattle/genetics , Cattle/growth & development , Dietary Fiber/metabolism , Energy Metabolism , Female , Genomics , Manure , Random Allocation
3.
J Dairy Sci ; 92(5): 2166-73, 2009 May.
Article in English | MEDLINE | ID: mdl-19389975

ABSTRACT

Genetic variation and resemblance among relatives are fundamentals of quantitative genetics. Our purpose was to identify bulls with a bimodal pattern of inheritance in the quest for new discoveries about the inheritance of calf survival. A bimodal pattern of inheritance for calf survival was identified in sons of Holstein bulls. A bimodal pattern of inheritance indicates 2 groups of sons resulting from an allele effect, a grandsire effect, or some other common factor. Different combinations (AA, Aa, aa) of 2 alleles at a locus cause varying phenotypes to be expressed. Bulls that are heterozygous for loci affecting reproductive performance may have a bimodal pattern of inheritance if the difference in effect of the 2 alleles is large. If the bimodal pattern is caused by an allele effect, then molecular markers can be identified for use in marker-assisted selection breeding programs. Data on predicted transmitting ability for perinatal survival for the first parity of 8,678 sons of 599 sires were collected from 1984 through 1997 from the National Association of Animal Breeders calving ease database, which included 7 Midwestern states. Sixteen bulls were identified with a potential bimodal pattern of inheritance because they had 2 distinct groups of sons. The 2 groups of sons were separated by calculating the coefficient of variation for each possible combination of sons; the combination that gave the smallest coefficient of variation difference between the 2 groups was considered the correct distribution of the sons into those groups. Bulls with a bimodal distribution were analyzed to determine the distribution of the grandsons among the maternal grandsires (MGS) of the 2 groups of the bimodal distribution. The bimodal distribution may be a result of heterozygous sires or MGS that are homozygous for low or high survival. If the bimodal distribution is caused by a MGS effect, then marker-assisted selection can still be used by evaluating the MGS instead of the sires.


Subject(s)
Cattle/physiology , Animals , Cattle/genetics , Female , Male , Postpartum Period , Pregnancy , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...