Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Anim Sci ; 7(1): txad064, 2023 Jan.
Article in English | MEDLINE | ID: mdl-37601954

ABSTRACT

Sire selection for beef on dairy crosses plays an important role in livestock systems as it may affect future performance and carcass traits of growing and finishing crossbred cattle. The phenotypic variation found in beef on dairy crosses has raised concerns from meat packers due to animals with dairy-type carcass characteristics. The use of morphometric measurements may help to understand the phenotypic structures of sire progeny for selecting animals with greater performance. In addition, due to the relationship with growth, these measurements could be used to early predict the performance until the transition from dairy farms to sales. The objectives of this study were 1) to evaluate the effect of different beef sires and breeds on the morphometric measurements of crossbred calves including cannon bone (CB), forearm (FA), hip height (HH), face length (FL), face width (FW) and growth performance; and (2) to predict the weight gain from birth to transition from dairy farms to sale (WG) and the body weight at sale (BW) using such morphometric measurements obtained at first days of animals' life. CB, FA, HH, FL, FW, and weight at 7 ±â€…5 d (BW7) (Table 1) were measured on 206 calves, from four different sire breeds [Angus (AN), SimAngus (SA), Simmental (SI), and Limousin (LI)], from five farms. To evaluate the morphometric measurements at the transition from dairy farms to sale and animal performance 91 out of 206 calves sourced from four farms, and offspring of two different sires (AN and SA) were used. To predict the WG and BW, 97 calves, and offspring of three different sires (AN, SA, and LI) were used. The data were analyzed using a mixed model, considering farm and sire as random effects. To predict WG and BW, two linear models (including or not the morphometric measurements) were used, and a leave-one-out cross-validation strategy was used to evaluate their predictive quality. The HH and BW7 were 7.67% and 10.7% higher (P < 0.05) in SA crossbred calves compared to AN, respectively. However, the ADG and adjusted body weight to 120 d were 14.3% and 9.46% greater (P < 0.05) in AN compared to SA. The morphometric measurements improved the model's predictive performance for WG and BW. In conclusion, morphometric measurements at the first days of calves' life can be used to predict animals' performance in beef on dairy. Such a strategy could lead to optimized management decisions and greater profitability in dairy farms.

2.
Biol Reprod ; 78(3): 483-9, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18032421

ABSTRACT

The transcription factor ets variant gene 5 (ETV5; also known as ERM) is essential for self-renewal of spermatogonial stem cells (SSCs). Mice with targeted disruption of Etv5 (Etv5(-/-)) undergo the first wave of spermatogenesis, but all SSCs are lost during this time, causing a Sertoli cell-only phenotype. This study examined body and testis growth and the time course of SSC loss in Etv5(-/-) mice to understand how loss of ETV5 impacts testicular and somatic development. Body weights were reduced in postnatal Etv5(-/-) males, indicating a role of ETV5 in growth. Testis weights and histology in Etv5(-/-) and wild-type (WT) males were similar at Postnatal Day 4, but testis weights were reduced at d8 and subsequently, indicating that ETV5 impacts postnatal testis growth. SSC density (SSCs per mum(2) of seminiferous tubule), estimated using an antibody against GFRA1, was similar in 4d WT and Etv5(-/-) mice. By 8 and 12d, GFRA1-positive cell density in Etv5(-/-) mice was decreased 17% and 32%, respectively, vs. WT. By 28d, GFRA1-positive cell density in Etv5(-/-) was reduced 95%, and GFRA1-positive cells were absent in 36d Etv5(-/-) males. In contrast to WT, 35- to 56-day-old Etv5(-/-) mice were infertile as assessed by natural breeding, artificial insemination, and in vitro fertilization, although motile sperm were present in epididymides of Etv5(-/-) mice during this time. In summary, initial testis development is normal in Etv5(-/-) mice despite decreased body weight, but SSC loss begins between 4 and 8d of age, indicating that ETV5 has effects beginning in the early neonatal period. Etv5(-/-) mice are infertile even when sperm is produced, indicating that ETV5 loss has other effects besides lack of SSC self-renewal that impair fertility.


Subject(s)
Body Weight/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/physiology , Fertility/genetics , Spermatogonia/physiology , Stem Cells/physiology , Testis/growth & development , Transcription Factors/genetics , Transcription Factors/physiology , Animals , Cell Death/genetics , Female , Growth and Development/genetics , Male , Mice , Mice, Knockout , Organ Size/genetics , Spermatogenesis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...