Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
2.
Sci Rep ; 13(1): 19604, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001095

ABSTRACT

Climate change adaptation is paramount, but increasing evidence suggests that adaptation action is subject to a range of constraints. For a realistic assessment of future adaptation prospects, it is crucial to understand the timescales needed to overcome these constraints. Here, we combine data on documented adaptation from the Global Adaptation Mapping Initiative with national macro indicators and assess future changes in adaptation constraints alongside the Shared Socioeconomic Pathways, spanning a wide range of future socio-economic development scenarios. We find that even in the most optimistic scenario, it will take until well after 2050 to overcome key constraints, which will limit adaptation for decades to come particularly in vulnerable countries. The persistence of adaptation constraints calls for stringent mitigation, improved adaptation along with dedicated finance and increasing efforts to address loss and damage. Our approach allows to ground truth indicators that can be further used in climate modelling efforts, improving the representation of adaptation and its risk reduction potential.

3.
Environ Res Lett ; 18(6): 061005-61005, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37366531

ABSTRACT

Climate change can substantially affect temperature-related mortality and morbidity, especially under high green-house gas emission pathways. Achieving the Paris Agreement goals require not only drastic reductions in fossil fuel-based emissions but also land-use and land-cover changes (LULCC), such as reforestation and afforestation. LULCC has been mainly analysed in the context of land-based mitigation and food security. However, growing scientific evidence shows that LULCC can also substantially alter climate through biogeophysical effects. Little is known about the consequential impacts on human health. LULCC-related impact research should broaden its scope by including the human health impacts. LULCC are relevant to several global agendas (i.e. Sustainable Development Goals). Thus, collaboration across research communities and stronger stakeholder engagement are required to address this knowledge gap.

4.
Nat Commun ; 13(1): 7453, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36460636

ABSTRACT

Transformation pathways for the land sector in line with the Paris Agreement depend on the assumption of globally implemented greenhouse gas (GHG) emission pricing, and in some cases also on inclusive socio-economic development and sustainable land-use practices. In such pathways, the majority of GHG emission reductions in the land system is expected to come from low- and middle-income countries, which currently account for a large share of emissions from agriculture, forestry and other land use (AFOLU). However, in low- and middle-income countries the economic, financial and institutional barriers for such transformative changes are high. Here, we show that if sustainable development in the land sector remained highly unequal and limited to high-income countries only, global AFOLU emissions would remain substantial throughout the 21st century. Our model-based projections highlight that overcoming global inequality is critical for land-based mitigation in line with the Paris Agreement. While also a scenario purely based on either global GHG emission pricing or on inclusive socio-economic development would achieve the stringent emissions reductions required, only the latter ensures major co-benefits for other Sustainable Development Goals, especially in low- and middle-income regions.


Subject(s)
Climate Change , Greenhouse Gases , Agriculture , Sustainable Development , Developed Countries , Developing Countries
6.
Nat Commun ; 12(1): 7140, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34880228

ABSTRACT

High-level assessments of climate change impacts aggregate multiple perils into a common framework. This requires incorporating multiple dimensions of uncertainty. Here we propose a methodology to transparently assess these uncertainties within the 'Reasons for Concern' framework, using extreme heat as a case study. We quantitatively discriminate multiple dimensions of uncertainty, including future vulnerability and exposure to changing climate hazards. High risks from extreme heat materialise after 1.5-2 °C and very high risks between 2-3.5 °C of warming. Risks emerge earlier if global assessments were based on national risk thresholds, underscoring the need for stringent mitigation to limit future extreme heat risks.

8.
Lancet Planet Health ; 5(7): e455-e465, 2021 07.
Article in English | MEDLINE | ID: mdl-34245716

ABSTRACT

BACKGROUND: Although effects on labour is one of the most tangible and attributable climate impact, our quantification of these effects is insufficient and based on weak methodologies. Partly, this gap is due to the inability to resolve different impact channels, such as changes in time allocation (labour supply) and slowdown of work (labour productivity). Explicitly resolving those in a multi-model inter-comparison framework can help to improve estimates of the effects of climate change on labour effectiveness. METHODS: In this empirical, multi-model study, we used a large collection of micro-survey data aggregated to subnational regions across the world to estimate new, robust global and regional temperature and wet-bulb globe temperature exposure-response functions (ERFs) for labour supply. We then assessed the uncertainty in existing labour productivity response functions and derived an augmented mean function. Finally, we combined these two dimensions of labour into a single compound metric (effective labour effects). This combined measure allowed us to estimate the effect of future climate change on both the number of hours worked and on the productivity of workers during their working hours under 1·5°C, 2·0°C, and 3·0°C of global warming. We separately analysed low-exposure (indoors or outdoors in the shade) and high-exposure (outdoor in the sun) sectors. FINDINGS: We found differentiated empirical regional and sectoral ERF's for labour supply. Current climate conditions already negatively affect labour effectiveness, particularly in tropical countries. Future climate change will reduce global total labour in the low-exposure sectors by 18 percentage points (range -48·8 to 5·3) under a scenario of 3·0°C warming (24·8 percentage points in the high-exposure sectors). The reductions will be 25·9 percentage points (-48·8 to 2·7) in Africa, 18·6 percentage points (-33·6 to 5·3) in Asia, and 10·4 percentage points (-35·0 to 2·6) in the Americas in the low-exposure sectors. These regional effects are projected to be substantially higher for labour outdoors in full sunlight compared with indoors (or outdoors in the shade) with the average reductions in total labour projected to be 32·8 percentage points (-66·3 to 1·6) in Africa, 25·0 percentage points (-66·3 to 7·0) in Asia, and 16·7 percentage points (-45·5 to 4·4) in the Americas. INTERPRETATION: Both labour supply and productivity are projected to decrease under future climate change in most parts of the world, and particularly in tropical regions. Parts of sub-Saharan Africa, south Asia, and southeast Asia are at highest risk under future warming scenarios. The heterogeneous regional response functions suggest that it is necessary to move away from one-size-fits-all response functions to investigate the climate effect on labour. Our findings imply income and distributional consequences in terms of increased inequality and poverty, especially in low-income countries, where the labour effects are projected to be high. FUNDING: COST (European Cooperation in Science and Technology).


Subject(s)
Climate Change , Efficiency , Forecasting , Global Warming , Humans , Temperature
9.
Nat Commun ; 11(1): 6261, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33319776

ABSTRACT

Gender inequalities are reflected in differential vulnerability, and exposure to the hazards posed by climate change and addressing them is key to increase the adaptive capacities of societies. We provide trajectories of the Gender Inequality Index (GII) alongside the Shared-Socioeconomic Pathways (SSPs), a scenario framework widely used in climate science. Here we find that rapid improvements in gender inequality are possible under a sustainable development scenario already in the near-term. The share of girls growing up in countries with the highest gender inequality could be reduced to about 24% in 2030 compared to about 70% today. Largely overcoming gender inequality as assessed in the GII would be within reach by mid-century. Under less optimistic scenarios, gender inequality may persist throughout the 21st century. Our results highlight the importance of incorporating gender in scenarios assessing future climate impacts and underscore the relevance of addressing gender inequalities in policies aiming to foster climate resilient development.

12.
Proc Natl Acad Sci U S A ; 116(47): 23487-23492, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31685608

ABSTRACT

The main contributors to sea-level rise (oceans, glaciers, and ice sheets) respond to climate change on timescales ranging from decades to millennia. A focus on the 21st century thus fails to provide a complete picture of the consequences of anthropogenic greenhouse gas emissions on future sea-level rise and its long-term impacts. Here we identify the committed global mean sea-level rise until 2300 from historical emissions since 1750 and the currently pledged National Determined Contributions (NDC) under the Paris Agreement until 2030. Our results indicate that greenhouse gas emissions over this 280-y period result in about 1 m of committed global mean sea-level rise by 2300, with the NDC emissions from 2016 to 2030 corresponding to around 20 cm or 1/5 of that commitment. We also find that 26 cm (12 cm) of the projected sea-level-rise commitment in 2300 can be attributed to emissions from the top 5 emitting countries (China, United States of America, European Union, India, and Russia) over the 1991-2030 (2016-2030) period. Our findings demonstrate that global and individual country emissions over the first decades of the 21st century alone will cause substantial long-term sea-level rise.

13.
Clim Change ; 150(3-4): 391-402, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30405277

ABSTRACT

The Paris Agreement binds all nations to undertake ambitious efforts to combat climate change, with the commitment to Bhold warming well below 2 °C in global mean temperature (GMT), relative to pre-industrial levels, and to pursue efforts to limit warming to 1.5 °C". The 1.5 °C limit constitutes an ambitious goal for which greater evidence on its benefits for health would help guide policy and potentially increase the motivation for action. Here we contribute to this gap with an assessment on the potential health benefits, in terms of reductions in temperature-related mortality, derived from the compliance to the agreed temperature targets, compared to more extreme warming scenarios. We performed a multi-region analysis in 451 locations in 23 countries with different climate zones, and evaluated changes in heat and cold-related mortality under scenarios consistent with the Paris Agreement targets (1.5 and 2 °C) and more extreme GMT increases (3 and 4 °C), and under the assumption of no changes in demographic distribution and vulnerability. Our results suggest that limiting warming below 2 °C could prevent large increases in temperature-related mortality in most regions worldwide. The comparison between 1.5 and 2 °C is more complex and characterized by higher uncertainty, with geographical differences that indicate potential benefits limited to areas located in warmer climates, where direct climate change impacts will be more discernible.

14.
Nature ; 558(7708): 41-49, 2018 06.
Article in English | MEDLINE | ID: mdl-29875489

ABSTRACT

The United Nations' Paris Agreement includes the aim of pursuing efforts to limit global warming to only 1.5 °C above pre-industrial levels. However, it is not clear what the resulting climate would look like across the globe and over time. Here we show that trajectories towards a '1.5 °C warmer world' may result in vastly different outcomes at regional scales, owing to variations in the pace and location of climate change and their interactions with society's mitigation, adaptation and vulnerabilities to climate change. Pursuing policies that are considered to be consistent with the 1.5 °C aim will not completely remove the risk of global temperatures being much higher or of some regional extremes reaching dangerous levels for ecosystems and societies over the coming decades.


Subject(s)
Climate , Environmental Policy/legislation & jurisprudence , Geographic Mapping , Global Warming/prevention & control , International Cooperation , Models, Theoretical , Temperature , Congresses as Topic , Conservation of Natural Resources/trends , Ecosystem , Global Warming/legislation & jurisprudence , Human Activities , Paris , Spatio-Temporal Analysis , Stochastic Processes , Uncertainty
15.
Philos Trans A Math Phys Eng Sci ; 376(2119)2018 May 13.
Article in English | MEDLINE | ID: mdl-29610385

ABSTRACT

The Agricultural Model Intercomparison and Improvement Project (AgMIP) has developed novel methods for Coordinated Global and Regional Assessments (CGRA) of agriculture and food security in a changing world. The present study aims to perform a proof of concept of the CGRA to demonstrate advantages and challenges of the proposed framework. This effort responds to the request by the UN Framework Convention on Climate Change (UNFCCC) for the implications of limiting global temperature increases to 1.5°C and 2.0°C above pre-industrial conditions. The protocols for the 1.5°C/2.0°C assessment establish explicit and testable linkages across disciplines and scales, connecting outputs and inputs from the Shared Socio-economic Pathways (SSPs), Representative Agricultural Pathways (RAPs), Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) and Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble scenarios, global gridded crop models, global agricultural economics models, site-based crop models and within-country regional economics models. The CGRA consistently links disciplines, models and scales in order to track the complex chain of climate impacts and identify key vulnerabilities, feedbacks and uncertainties in managing future risk. CGRA proof-of-concept results show that, at the global scale, there are mixed areas of positive and negative simulated wheat and maize yield changes, with declines in some breadbasket regions, at both 1.5°C and 2.0°C. Declines are especially evident in simulations that do not take into account direct CO2 effects on crops. These projected global yield changes mostly resulted in increases in prices and areas of wheat and maize in two global economics models. Regional simulations for 1.5°C and 2.0°C using site-based crop models had mixed results depending on the region and the crop. In conjunction with price changes from the global economics models, productivity declines in the Punjab, Pakistan, resulted in an increase in vulnerable households and the poverty rate.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.

16.
Philos Trans A Math Phys Eng Sci ; 376(2119)2018 May 13.
Article in English | MEDLINE | ID: mdl-29610382

ABSTRACT

This article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the 'Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated through soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.

17.
Nat Commun ; 9(1): 601, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29463787

ABSTRACT

Sea-level rise is a major consequence of climate change that will continue long after emissions of greenhouse gases have stopped. The 2015 Paris Agreement aims at reducing climate-related risks by reducing greenhouse gas emissions to net zero and limiting global-mean temperature increase. Here we quantify the effect of these constraints on global sea-level rise until 2300, including Antarctic ice-sheet instabilities. We estimate median sea-level rise between 0.7 and 1.2 m, if net-zero greenhouse gas emissions are sustained until 2300, varying with the pathway of emissions during this century. Temperature stabilization below 2 °C is insufficient to hold median sea-level rise until 2300 below 1.5 m. We find that each 5-year delay in near-term peaking of CO2 emissions increases median year 2300 sea-level rise estimates by ca. 0.2 m, and extreme sea-level rise estimates at the 95th percentile by up to 1 m. Our results underline the importance of near-term mitigation action for limiting long-term sea-level rise risks.

18.
Nat Commun ; 8: 14681, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28287104

ABSTRACT

Reduced rainfall increases the risk of forest dieback, while in return forest loss might intensify regional droughts. The consequences of this vegetation-atmosphere feedback for the stability of the Amazon forest are still unclear. Here we show that the risk of self-amplified Amazon forest loss increases nonlinearly with dry-season intensification. We apply a novel complex-network approach, in which Amazon forest patches are linked by observation-based atmospheric water fluxes. Our results suggest that the risk of self-amplified forest loss is reduced with increasing heterogeneity in the response of forest patches to reduced rainfall. Under dry-season Amazonian rainfall reductions, comparable to Last Glacial Maximum conditions, additional forest loss due to self-amplified effects occurs in 10-13% of the Amazon basin. Although our findings do not indicate that the projected rainfall changes for the end of the twenty-first century will lead to complete Amazon dieback, they suggest that frequent extreme drought events have the potential to destabilize large parts of the Amazon forest.

19.
Sci Rep ; 6: 30790, 2016 08 11.
Article in English | MEDLINE | ID: mdl-27510641

ABSTRACT

Large-scale transitions in societies are associated with both individual behavioural change and restructuring of the social network. These two factors have often been considered independently, yet recent advances in social network research challenge this view. Here we show that common features of societal marginalization and clustering emerge naturally during transitions in a co-evolutionary adaptive network model. This is achieved by explicitly considering the interplay between individual interaction and a dynamic network structure in behavioural selection. We exemplify this mechanism by simulating how smoking behaviour and the network structure get reconfigured by changing social norms. Our results are consistent with empirical findings: The prevalence of smoking was reduced, remaining smokers were preferentially connected among each other and formed increasingly marginalized clusters. We propose that self-amplifying feedbacks between individual behaviour and dynamic restructuring of the network are main drivers of the transition. This generative mechanism for co-evolution of individual behaviour and social network structure may apply to a wide range of examples beyond smoking.


Subject(s)
Models, Theoretical , Social Behavior , Social Support , Humans
20.
Proc Natl Acad Sci U S A ; 113(33): 9216-21, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27457927

ABSTRACT

Social and political tensions keep on fueling armed conflicts around the world. Although each conflict is the result of an individual context-specific mixture of interconnected factors, ethnicity appears to play a prominent and almost ubiquitous role in many of them. This overall state of affairs is likely to be exacerbated by anthropogenic climate change and in particular climate-related natural disasters. Ethnic divides might serve as predetermined conflict lines in case of rapidly emerging societal tensions arising from disruptive events like natural disasters. Here, we hypothesize that climate-related disaster occurrence enhances armed-conflict outbreak risk in ethnically fractionalized countries. Using event coincidence analysis, we test this hypothesis based on data on armed-conflict outbreaks and climate-related natural disasters for the period 1980-2010. Globally, we find a coincidence rate of 9% regarding armed-conflict outbreak and disaster occurrence such as heat waves or droughts. Our analysis also reveals that, during the period in question, about 23% of conflict outbreaks in ethnically highly fractionalized countries robustly coincide with climatic calamities. Although we do not report evidence that climate-related disasters act as direct triggers of armed conflicts, the disruptive nature of these events seems to play out in ethnically fractionalized societies in a particularly tragic way. This observation has important implications for future security policies as several of the world's most conflict-prone regions, including North and Central Africa as well as Central Asia, are both exceptionally vulnerable to anthropogenic climate change and characterized by deep ethnic divides.


Subject(s)
Armed Conflicts , Climate , Disasters , Climate Change , Developing Countries , Gross Domestic Product , Humans , Risk
SELECTION OF CITATIONS
SEARCH DETAIL
...