Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Surg Res ; 298: 176-184, 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38621351

ABSTRACT

INTRODUCTION: Renin-angiotensin-aldosterone system inhibitors (RAAS-I) have been shown to prolong overall survival in patients with liver metastasized colorectal cancer in combination with antiangiogenic treatment. The effects of RAAS-I combined with neoadjuvant chemotherapy on colorectal cancer liver metastasis remain unexplored. We aimed to study the response of patients undergoing liver resection to RAAS-I in combination with neoadjuvant therapy to elucidate their potential benefits. METHODS: Between February 2005 and May 2012, 62 patients fulfilled the inclusion criteria for distant metastasis (cM1) and comparable computed tomography or magnetic resonance tomography scans in the Picture Archiving Communication System of our center before and after neoadjuvant chemotherapy. Follow-up data and clinicopathological characteristics were collected from a prospective database and retrospectively investigated. The chemotherapeutic response to liver metastasis was evaluated according to the Response Evaluation Criteria in Solid Tumors criteria 1.1. RESULTS: Comparing the average reduction of measured lesions, a significant response to chemotherapy was detected in the patients receiving RAAS-I (n = 24) compared to those who did not (n = 38) (P = 0.031). Interestingly, the effect was more distinctive when the size reduction was compared between high responses with more than 50% size reduction of all measured lesions (P = 0.011). In the subgroup analysis of patients receiving bevacizumab treatment, high responses to chemotherapy were observed only in the RAAS-I cohort (28.6% versus 0%, P = 0.022). CONCLUSIONS: For neoadjuvantly treated patients, concomitant antihypertensive treatment with RAAS-I showed a higher total size reduction of liver metastasis as a sign of treatment response, especially in combination with antiangiogenic treatment with bevacizumab.

2.
Cancer Med ; 13(7): e6866, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38545840

ABSTRACT

BACKGROUND: Despite multiple therapeutic modalities, the overall survival of patients with gastric adenocarcinoma remains poor, especially for advanced tumor stages. Although the tyrosine kinase MerTK has shown therapeutic relevance in several tumor entities, its potential effects in gastric adenocarcinoma have not yet been sufficiently characterized. METHODS: MerTK expression and its influence on patient survival were evaluated by immunohistochemistry in a cohort of 140 patients with gastric adenocarcinoma. CRISPR/Cas9 knockout and siRNA knockdown of MerTK in the gastric cancer cell lines SNU1, SNU5, and MKN45 was used to analyze protein expression, growth, migration, and invasion properties in vitro and in a murine xenograft model. MerTK was pharmacologically targeted with the small molecule inhibitor UNC2025 in vitro and in vivo. RESULTS: In patients, high MerTK expression was associated with decreased overall survival (OS) and lymph node metastasis especially in patients without neoadjuvant therapy (p < 0.05). Knockout and knockdown of MerTK reduced cell proliferation and migration both in vitro and in vivo. UNC2025, a small-molecule inhibitor of MerTK, exhibited a significant therapeutic response in vitro and in vivo. Additionally, MerTK expression attenuated the response to neoadjuvant treatment, and its inhibition sensitized tumor cells to 5-Fluorouracil (5-FU)-based chemotherapy in vitro. CONCLUSIONS: Our findings demonstrate the potential value of MerTK as a prognostic biomarker for gastric adenocarcinoma. Targeting MerTK may become a new treatment option, especially for patients with advanced tumors, and may overcome resistance to established chemotherapies.


Subject(s)
Adenocarcinoma , Stomach Neoplasms , Humans , Animals , Mice , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Cell Proliferation , Disease Models, Animal , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Cell Line, Tumor
4.
Nat Commun ; 14(1): 6947, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37935654

ABSTRACT

Disease-causing mutations in genes encoding transcription factors (TFs) can affect TF interactions with their cognate DNA-binding motifs. Whether and how TF mutations impact upon the binding to TF composite elements (CE) and the interaction with other TFs is unclear. Here, we report a distinct mechanism of TF alteration in human lymphomas with perturbed B cell identity, in particular classic Hodgkin lymphoma. It is caused by a recurrent somatic missense mutation c.295 T > C (p.Cys99Arg; p.C99R) targeting the center of the DNA-binding domain of Interferon Regulatory Factor 4 (IRF4), a key TF in immune cells. IRF4-C99R fundamentally alters IRF4 DNA-binding, with loss-of-binding to canonical IRF motifs and neomorphic gain-of-binding to canonical and non-canonical IRF CEs. IRF4-C99R thoroughly modifies IRF4 function by blocking IRF4-dependent plasma cell induction, and up-regulates disease-specific genes in a non-canonical Activator Protein-1 (AP-1)-IRF-CE (AICE)-dependent manner. Our data explain how a single mutation causes a complex switch of TF specificity and gene regulation and open the perspective to specifically block the neomorphic DNA-binding activities of a mutant TF.


Subject(s)
Interferon Regulatory Factors , Lymphoma , Humans , B-Lymphocytes/metabolism , DNA , Gene Expression Regulation , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Lymphoma/genetics
5.
Sci Immunol ; 8(79): eade7953, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36662884

ABSTRACT

Interferon regulatory factor 4 (IRF4) is a transcription factor (TF) and key regulator of immune cell development and function. We report a recurrent heterozygous mutation in IRF4, p.T95R, causing an autosomal dominant combined immunodeficiency (CID) in seven patients from six unrelated families. The patients exhibited profound susceptibility to opportunistic infections, notably Pneumocystis jirovecii, and presented with agammaglobulinemia. Patients' B cells showed impaired maturation, decreased immunoglobulin isotype switching, and defective plasma cell differentiation, whereas their T cells contained reduced TH17 and TFH populations and exhibited decreased cytokine production. A knock-in mouse model of heterozygous T95R showed a severe defect in antibody production both at the steady state and after immunization with different types of antigens, consistent with the CID observed in these patients. The IRF4T95R variant maps to the TF's DNA binding domain, alters its canonical DNA binding specificities, and results in a simultaneous multimorphic combination of loss, gain, and new functions for IRF4. IRF4T95R behaved as a gain-of-function hypermorph by binding to DNA with higher affinity than IRF4WT. Despite this increased affinity for DNA, the transcriptional activity on IRF4 canonical genes was reduced, showcasing a hypomorphic activity of IRF4T95R. Simultaneously, IRF4T95R functions as a neomorph by binding to noncanonical DNA sites to alter the gene expression profile, including the transcription of genes exclusively induced by IRF4T95R but not by IRF4WT. This previously undescribed multimorphic IRF4 pathophysiology disrupts normal lymphocyte biology, causing human disease.


Subject(s)
Gene Expression Regulation , Interferon Regulatory Factors , Mice , Animals , Humans , B-Lymphocytes , DNA/metabolism , Mutation
6.
Haematologica ; 108(2): 543-554, 2023 02 01.
Article in English | MEDLINE | ID: mdl-35522148

ABSTRACT

Histone methylation-modifiers, such as EZH2 and KMT2D, are recurrently altered in B-cell lymphomas. To comprehensively describe the landscape of alterations affecting genes encoding histone methylation-modifiers in lymphomagenesis we investigated whole genome and transcriptome data of 186 mature B-cell lymphomas sequenced in the ICGC MMML-Seq project. Besides confirming common alterations of KMT2D (47% of cases), EZH2 (17%), SETD1B (5%), PRDM9 (4%), KMT2C (4%), and SETD2 (4%), also identified by prior exome or RNA-sequencing studies, we here found recurrent alterations to KDM4C in chromosome 9p24, encoding a histone demethylase. Focal structural variation was the main mechanism of KDM4C alterations, and was independent from 9p24 amplification. We also identified KDM4C alterations in lymphoma cell lines including a focal homozygous deletion in a classical Hodgkin lymphoma cell line. By integrating RNA-sequencing and genome sequencing data we predict that KDM4C structural variants result in loss-offunction. By functional reconstitution studies in cell lines, we provide evidence that KDM4C can act as a tumor suppressor. Thus, we show that identification of structural variants in whole genome sequencing data adds to the comprehensive description of the mutational landscape of lymphomas and, moreover, establish KDM4C as a putative tumor suppressive gene recurrently altered in subsets of B-cell derived lymphomas.


Subject(s)
Lymphoma, B-Cell , Lymphoma , Humans , Histones/metabolism , Histone Demethylases/genetics , Homozygote , Sequence Deletion , Lymphoma/genetics , Lymphoma, B-Cell/genetics , Whole Genome Sequencing , RNA , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/chemistry , Jumonji Domain-Containing Histone Demethylases/metabolism , Histone-Lysine N-Methyltransferase/genetics
7.
Cancers (Basel) ; 14(17)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36077793

ABSTRACT

Colorectal cancer (CRC) is among the deadliest cancers worldwide, with metastasis being the main cause of patient mortality. During CRC progression the complex tumor ecosystem changes in its composition at virtually every stage. However, clonal dynamics and associated niche-dependencies at these stages are unknown. Hence, it is of importance to utilize models that faithfully recapitulate human CRC to define its clonal dynamics. We used an optical barcoding approach in mouse-derived organoids (MDOs) that revealed niche-dependent clonal selection. Our findings highlight that clonal selection is controlled by a site-specific niche, which critically contributes to cancer heterogeneity and has implications for therapeutic intervention.

8.
Sci Immunol ; 7(71): eabh1873, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35622904

ABSTRACT

T cells become functionally exhausted in tumors, limiting T cell-based immunotherapies. Although several transcription factors regulating the exhausted T (Tex) cell differentiation are known, comparatively little is known about the regulators of Tex cell survival. Here, we reported that the regulator of G protein signaling 16 (Rgs-16) suppressed Tex cell survival in tumors. By performing lineage tracing using reporter mice in which mCherry marked Rgs16-expressing cells, we identified that Rgs16+CD8+ tumor-infiltrating lymphocytes (TILs) were terminally differentiated, expressed low levels of T cell factor 1 (Tcf1), and underwent apoptosis as early as 6 days after the onset of Rgs16 expression. Rgs16 deficiency inhibited CD8+ T cell apoptosis and promoted antitumor effector functions of CD8+ T cells. Furthermore, Rgs16 deficiency synergized with programmed cell death protein 1 (PD-1) blockade to enhance antitumor CD8+ T cell responses. Proteomics revealed that Rgs16 interacted with the scaffold protein IQGAP1, suppressed the recruitment of Ras and B-Raf, and inhibited Erk1 activation. Rgs16 deficiency enhanced antitumor CD8+ TIL survival in an Erk1-dependent manner. Loss of function of Erk1 decreased antitumor functions of Rgs16-deficient CD8+ T cells. RGS16 mRNA expression levels in CD8+ TILs of patients with melanoma negatively correlated with genes associated with T cell stemness, such as SELL, TCF7, and IL7R, and predicted low responses to PD-1 blockade. This study uncovers Rgs16 as an inhibitor of Tex cell survival in tumors and has implications for improving T cell-based immunotherapies.


Subject(s)
CD8-Positive T-Lymphocytes , Programmed Cell Death 1 Receptor , RGS Proteins/immunology , Animals , Cell Differentiation , Humans , Immunotherapy , Lymphocytes, Tumor-Infiltrating , Mice
9.
Cancers (Basel) ; 13(19)2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34638496

ABSTRACT

In 50-60% of cases, systemic anaplastic large cell lymphoma (ALCL) is characterized by the t(2;5)(p23;q35) or one of its variants, considered to be causative for anaplastic lymphoma kinase (ALK)-positive (ALK+) ALCL. Key pathogenic events in ALK-negative (ALK-) ALCL are less well defined. We have previously shown that deregulation of oncogenic genes surrounding the chromosomal breakpoints on 2p and 5q is a unifying feature of both ALK+ and ALK- ALCL and predisposes for occurrence of t(2;5). Here, we report that the invariant chain of the MHC-II complex CD74 or li, which is encoded on 5q32, can act as signaling molecule, and whose expression in lymphoid cells is usually restricted to B cells, is aberrantly expressed in T cell-derived ALCL. Accordingly, ALCL shows an altered DNA methylation pattern of the CD74 locus compared to benign T cells. Functionally, CD74 ligation induces cell death of ALCL cells. Furthermore, CD74 engagement enhances the cytotoxic effects of conventional chemotherapeutics in ALCL cell lines, as well as the action of the ALK-inhibitor crizotinib in ALK+ ALCL or of CD95 death-receptor signaling in ALK- ALCL. Additionally, a subset of ALCL cases expresses the proto-oncogene MET, which can form signaling complexes together with CD74. Finally, we demonstrate that the CD74-targeting antibody-drug conjugate STRO-001 efficiently and specifically kills CD74-positive ALCL cell lines in vitro. Taken together, these findings enabled us to demonstrate aberrant CD74-expression in ALCL cells, which might serve as tool for the development of new treatment strategies for this lymphoma entity.

10.
Nat Commun ; 12(1): 5577, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34552066

ABSTRACT

Anaplastic large cell lymphoma (ALCL), an aggressive CD30-positive T-cell lymphoma, comprises systemic anaplastic lymphoma kinase (ALK)-positive, and ALK-negative, primary cutaneous and breast implant-associated ALCL. Prognosis of some ALCL subgroups is still unsatisfactory, and already in second line effective treatment options are lacking. To identify genes defining ALCL cell state and dependencies, we here characterize super-enhancer regions by genome-wide H3K27ac ChIP-seq. In addition to known ALCL key regulators, the AP-1-member BATF3 and IL-2 receptor (IL2R)-components are among the top hits. Specific and high-level IL2R expression in ALCL correlates with BATF3 expression. Confirming a regulatory link, IL-2R-expression decreases following BATF3 knockout, and BATF3 is recruited to IL2R regulatory regions. Functionally, IL-2, IL-15 and Neo-2/15, a hyper-stable IL-2/IL-15 mimic, accelerate ALCL growth and activate STAT1, STAT5 and ERK1/2. In line, strong IL-2Rα-expression in ALCL patients is linked to more aggressive clinical presentation. Finally, an IL-2Rα-targeting antibody-drug conjugate efficiently kills ALCL cells in vitro and in vivo. Our results highlight the importance of the BATF3/IL-2R-module for ALCL biology and identify IL-2Rα-targeting as a promising treatment strategy for ALCL.


Subject(s)
Basic-Leucine Zipper Transcription Factors/genetics , Lymphoma, Large-Cell, Anaplastic/genetics , Receptors, Interleukin-2/genetics , Repressor Proteins/genetics , Animals , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic , Humans , Immunoconjugates/pharmacology , Interleukin-15/pharmacology , Interleukin-2/pharmacology , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-2 Receptor alpha Subunit/immunology , Interleukin-2 Receptor alpha Subunit/metabolism , Ki-1 Antigen/genetics , Ki-1 Antigen/metabolism , Lymphoma, Large-Cell, Anaplastic/drug therapy , Lymphoma, Large-Cell, Anaplastic/metabolism , Lymphoma, Large-Cell, Anaplastic/pathology , Mice , Receptors, Interleukin-2/immunology , Receptors, Interleukin-2/metabolism , Regulatory Sequences, Nucleic Acid , Repressor Proteins/metabolism , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
11.
Int J Mol Sci ; 22(12)2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34208547

ABSTRACT

BACKGROUND: Granulin is a secreted, glycosylated peptide-originated by cleavage from a precursor protein-which is involved in cell growth, tumor invasion and angiogenesis. However, the specific prognostic impact of granulin in human colorectal cancer has only been studied to a limited extent. Thus, we wanted to assess the expression of granulin in colorectal cancer patients to evaluate its potential as a prognostic biomarker. METHODS: Expressional differences of granulin in colorectal carcinoma tissue (n = 94) and corresponding healthy colon mucosa were assessed using qRT-PCR. Immunohistochemistry was performed in colorectal cancer specimens (n = 97), corresponding healthy mucosa (n = 47) and colorectal adenomas (n = 19). Subsequently, the results were correlated with histopathological and clinical patients' data. HCT-116 cells were transfected with siRNA for invasion and migration assays. RESULTS: Immunohistochemistry and qRT-PCR revealed tumoral over expression of granulin in colorectal cancer specimens compared to corresponding healthy colon mucosa and adenomas. Tumoral overexpression of granulin was associated with a significantly impaired overall survival. Moreover, downregulation of granulin by siRNA significantly diminished the invasive capacities of HCT-116 cells in vitro. CONCLUSION: Expression of granulin differs in colorectal cancer tissue, adenomas and healthy colon mucosa. Furthermore, granulin features invasive and migrative capabilities and overexpression of granulin correlates with a dismal prognosis. This reveals its potential as a prognostic biomarker and granulin could be a worthwhile molecular target for individualized anticancer therapy.


Subject(s)
Biomarkers, Tumor , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/mortality , Granulins/metabolism , Aged , Aged, 80 and over , Colorectal Neoplasms/etiology , Colorectal Neoplasms/metabolism , Female , Gene Expression , Granulins/genetics , HCT116 Cells , Humans , Immunohistochemistry , Male , Middle Aged , Neoplasm Invasiveness , Neoplasm Staging , Prognosis , Survival Analysis
12.
Cancer Cell ; 37(6): 800-817.e7, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32516590

ABSTRACT

Tumors are influenced by the mechanical properties of their microenvironment. Using patient samples and atomic force microscopy, we found that tissue stiffness is higher in liver metastases than in primary colorectal tumors. Highly activated metastasis-associated fibroblasts increase tissue stiffness, which enhances angiogenesis and anti-angiogenic therapy resistance. Drugs targeting the renin-angiotensin system, normally prescribed to treat hypertension, inhibit fibroblast contraction and extracellular matrix deposition, thereby reducing liver metastases stiffening and increasing the anti-angiogenic effects of bevacizumab. Patients treated with bevacizumab showed prolonged survival when concomitantly treated with renin-angiotensin inhibitors, highlighting the importance of modulating the mechanical microenvironment for therapeutic regimens.


Subject(s)
Bevacizumab/pharmacology , Cancer-Associated Fibroblasts/drug effects , Colorectal Neoplasms/drug therapy , Drug Synergism , Liver Neoplasms/drug therapy , Neovascularization, Pathologic/prevention & control , Renin-Angiotensin System/drug effects , Angiogenesis Inhibitors/pharmacology , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Cancer-Associated Fibroblasts/pathology , Captopril/pharmacology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/secondary , Losartan/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Tumor Microenvironment/drug effects
13.
Int J Mol Sci ; 21(3)2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32023907

ABSTRACT

Gastric and esophageal cancers are dreaded malignancies, with a majority of patients presenting in either a locally advanced or metastatic state. Global incidences are rising and the overall prognosis remains poor. The concept of oligometastasis has been established for other tumor entities and is also proposed for upper gastrointestinal tract cancers. This review article explores metastasis mechanisms on the molecular level, specific to esophageal and gastric adenocarcinoma. Existing data and recent studies that deal with upper gastrointestinal tumors in the oligometastatic state are reviewed. Furthermore, current therapeutic targets in gastroesophageal cancers are presented and discussed. Finally, a perspective about future diagnostic and therapeutic strategies is given.


Subject(s)
Adenocarcinoma/therapy , Esophageal Neoplasms/therapy , Gene Regulatory Networks , Stomach Neoplasms/therapy , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Clinical Trials as Topic , Combined Modality Therapy , Digestive System Surgical Procedures , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Gene Regulatory Networks/drug effects , Humans , Molecular Targeted Therapy , Neoplasm Metastasis , Prognosis , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology
14.
Blood ; 133(13): 1489-1494, 2019 03 28.
Article in English | MEDLINE | ID: mdl-30696620

ABSTRACT

Persistent NF-κB activation is a hallmark of the malignant Hodgkin/Reed-Sternberg (HRS) cells in classical Hodgkin lymphoma (cHL). Genomic lesions, Epstein-Barr virus infection, soluble factors, and tumor-microenvironment interactions contribute to this activation. Here, in an unbiased approach to identify the cHL cell-secreted key factors for NF-κB activation, we have dissected the secretome of cultured cHL cells by chromatography and subsequent mass spectrometry. We identified lymphotoxin-α (LTA) as the causative factor for autocrine and paracrine activation of canonical and noncanonical NF-κB in cHL cell lines. In addition to inducing NF-κB, LTA promotes JAK2/STAT6 signaling. LTA and its receptor TNFRSF14 are transcriptionally activated by noncanonical NF-κB, creating a continuous feedback loop. Furthermore, LTA shapes the expression of cytokines, receptors, immune checkpoint ligands and adhesion molecules, including CSF2, CD40, PD-L1/PD-L2, and VCAM1. Comparison with single-cell gene-activity profiles of human hematopoietic cells showed that LTA induces genes restricted to the lymphoid lineage, as well as those largely restricted to the myeloid lineage. Thus, LTA sustains autocrine NF-κB activation, impacts activation of several signaling pathways, and drives expression of genes essential for microenvironmental interactions and lineage ambiguity. These data provide a robust rationale for targeting LTA as a treatment strategy for cHL patients.


Subject(s)
Hodgkin Disease/immunology , Janus Kinase 2/immunology , Lymphotoxin-alpha/immunology , NF-kappa B/immunology , STAT6 Transcription Factor/immunology , Cell Line , Gene Expression Regulation, Neoplastic , Hodgkin Disease/genetics , Humans , Lymphotoxin-alpha/genetics , Reed-Sternberg Cells/immunology , Reed-Sternberg Cells/metabolism , Signal Transduction , Transcriptional Activation
15.
Leukemia ; 32(9): 1994-2007, 2018 09.
Article in English | MEDLINE | ID: mdl-29588546

ABSTRACT

Transcription factor AP-1 is constitutively activated and IRF4 drives growth and survival in ALK+ and ALK- anaplastic large cell lymphoma (ALCL). Here we demonstrate high-level BATF and BATF3 expression in ALCL. Both BATFs bind classical AP-1 motifs and interact with in ALCL deregulated AP-1 factors. Together with IRF4, they co-occupy AP-1-IRF composite elements, differentiating ALCL from non-ALCL. Gene-specific inactivation of BATFs, or global AP-1 inhibition results in ALCL growth retardation and/or cell death in vitro and in vivo. Furthermore, the AP-1-BATF module establishes TH17/group 3 innate lymphoid cells (ILC3)-associated gene expression in ALCL cells, including marker genes such as AHR, IL17F, IL22, IL26, IL23R and RORγt. Elevated IL-17A and IL-17F levels were detected in a subset of children and adolescents with ALK+ ALCL. Furthermore, a comprehensive analysis of primary lymphoma data confirms TH17-, and in particular ILC3-skewing in ALCL compared with PTCL. Finally, pharmacological inhibition of RORC as single treatment leads to cell death in ALCL cell lines and, in combination with the ALK inhibitor crizotinib, enforces death induction in ALK+ ALCL. Our data highlight the crucial role of AP-1/BATFs in ALCL and lead to the concept that some ALCL might originate from ILC3.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Lymphoma, Large-Cell, Anaplastic/etiology , Lymphoma, Large-Cell, Anaplastic/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Transcription Factor AP-1/metabolism , Binding Sites , CRISPR-Cas Systems , Carrier Proteins/metabolism , Cell Death/genetics , Cell Line, Tumor , Cell Survival , Cytokines/metabolism , Gene Editing , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Humans , Lymphoma, Large-Cell, Anaplastic/pathology , Protein Binding , Protein Kinase Inhibitors/pharmacology , RNA, Small Interfering/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...