Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 10: 832176, 2022.
Article in English | MEDLINE | ID: mdl-35433646

ABSTRACT

Rapid prototyping of biological functions has the common aim of generating, screening, and selecting variant libraries as quickly as possible. This approach is now to be extended by the HyperXpress workflow, which connects ligase cycling reaction for DNA assembly, multiply-primed rolling circle amplification for signal amplification, and cell-free protein synthesis to a single vessel reaction in the lower µl scale. After substantial optimization of the method a proof-of-principle demonstrating the high flexibility of HyperXpress for semi-rational protein engineering by expanding, reducing, and replacing ß-strands of three different green fluorescent proteins is described. These single-day experiments resulted in six functional, new-to-nature GFP prototypes.

2.
Synth Biol (Oxf) ; 4(1): ysz020, 2019.
Article in English | MEDLINE | ID: mdl-32995543

ABSTRACT

The ligase cycling reaction (LCR) is a scarless and efficient method to assemble plasmids from fragments of DNA. This assembly method is based on the hybridization of DNA fragments with complementary oligonucleotides, so-called bridging oligos (BOs), and an experimental procedure of thermal denaturation, annealing and ligation. In this study, we explore the effect of molecular crosstalk of BOs and various experimental parameters on the LCR by utilizing a fluorescence-based screening system. The results indicate an impact of the melting temperatures of BOs on the overall success of the LCR assembly. Secondary structure inhibitors, such as dimethyl sulfoxide and betaine, are shown to negatively impact the number of correctly assembled plasmids. Adjustments of the annealing, ligation and BO-melting temperature further improved the LCR. The optimized LCR was confirmed by validation experiments. Based on these findings, a step-by-step protocol is offered within this study to ensure a routine for high efficient LCR assemblies.

3.
Mol Pharm ; 11(7): 2092-105, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24635637

ABSTRACT

In vitro tissue models are useful tools for the development of novel therapy strategies in cartilage repair and care. The limited availability of human primary tissue and high costs of animal models hamper preclinical tests of innovative substances and techniques. In this study we tested the potential of porcine chondrocyte micromass cultures to mimic human articular cartilage and essential aspects of osteoarthritis (OA) in vitro. Primary chondrocytes were enzymatically isolated from porcine femoral condyles and were maintained in 96-multiwell format to establish micromass cultures in a high-throughput scale. Recombinant porcine tumor necrosis factor alpha (TNF-α) was used to induce OA-like changes documented on histological (Safranin O, collagen type II staining), biochemical (hydroxyproline assay, dimethylmethylene blue method), and gene expression level (Affymetrix porcine microarray, real time PCR) and were compared with published data from human articular cartilage and human micromass cultures. After 14 days in micromass culture, porcine primary chondrocytes produced ECM rich in proteoglycans and collagens. On gene expression level, significant correlations of detected genes with porcine cartilage (r = 0.90), human cartilage (r = 0.71), and human micromass culture (r = 0.75) were observed including 34 cartilage markers such as COL2A1, COMP, and aggrecan. TNF-α stimulation led to significant proteoglycan (-75%) and collagen depletion (-50%). Comparative expression pattern analysis revealed the involvement of catabolic enzymes (MMP1, -2, -13, ADAM10), chemokines (IL8, CCL2, CXCL2, CXCL12, CCXL14), and genes associated with cell death (TNFSF10, PMAIPI, AHR) and skeletal development (GPNMB, FRZB) including transcription factors (WIF1, DLX5, TWIST1) and growth factors (IGFBP1, -3, TGFB1) consistent with published data from human OA cartilage. Expression of genes related to cartilage ECM formation (COL2A1, COL9A1, COMP, aggrecan) as well as hypertrophic bone formation (COL1A1, COL10A1) was predominantly found decreased. These findings indicating significant parallels between human articular cartilage and the presented porcine micromass model and vice versa confirm the applicability of known cartilage marker and their characteristics in the porcine micromass model. TNF-α treatment enabled the initiation of typical OA reaction patterns in terms of extensive ECM loss, cell death, formation of an inflammatory environment through the induction of genes coding for chemokines and enzymes, and the modulation of genes involved in skeletal development such as growth factors, transcription factors, and cartilage ECM-forming genes. In conclusion, the porcine micromass model represents an alternative tissue platform for the evaluation of innovative substances and techniques for the treatment of OA.


Subject(s)
Cartilage, Articular/metabolism , Chondrocytes/metabolism , Osteoarthritis/metabolism , Animals , Cell Death/genetics , Cells, Cultured , Chemokines/genetics , Chemokines/metabolism , Collagen Type II/genetics , Collagen Type II/metabolism , Gene Expression/genetics , Gene Expression Profiling/methods , Humans , Osteoarthritis/genetics , Proteoglycans/genetics , Proteoglycans/metabolism , Swine , Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...