Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; 19(18): 2305-2312, 2018 09 18.
Article in English | MEDLINE | ID: mdl-29873442

ABSTRACT

The electro-optic Kerr effect in simple dipolar fluids such as nitrobenzene has been widely applied in electro-optical phase modulators and light shutters. In 2005, the discovery of the large Kerr effect in liquid-crystalline blue phases (Y. Hisakado et al., Adv. Mater. 2005, 17, 96-98.) gave new directions to the search for advanced Kerr effect materials. Even though the Kerr effect is present in all transparent and optically isotropic media, it is well known that the effect can be anomalously large in complex fluids, namely in the isotropic phase of liquid crystals or in polyelectrolyte solutions. Herein, it is shown that the Kerr effect in the isotropic phase of ionic liquid crystals combines the effective counterion polarization mechanism found in polyelectrolytes and the unique pretransitional growth of the Kerr constant found in the isotropic phase of nematic liquid crystals. Maximum Kerr constants in the order of several 10-11  m V-2 (ten times higher than the Kerr constant of the toxic nitrobenzene and less temperature sensitive than Kerr constants of nematic liquid crystals) make ionic liquid crystals attractive as new class of functional materials in low-speed Kerr effect applications.

2.
Chemphyschem ; 17(24): 4116-4123, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27712023

ABSTRACT

In ionic liquid crystals, the orthogonal smectic A phase is the most common phase whereas the tilted smectic C phase is rather rare. We present a new study with five novel ionic liquid crystals exhibiting both a smectic A as well as the rare smectic C phase. Two of them have a phenylpyrimidine core whereas the other three are imidazolium azobenzenes. Their phase sequences and tilt angles were studied by polarizing microscopy and their temperature-dependent layer spacing as well as their translational and orientational order parameters were studied by X-ray diffraction. The X-ray tilt angles derived from X-ray studies of the layer contraction and the optically measured tilt angles of the five ionic liquid crystals were compared to obtain their de Vries character. Four of our five mesogens turned out to show de Vries-like behavior with a layer shrinkage that is far less than that expected for conventional materials. These materials can thus be considered as the first de Vries-type materials among ionic liquid crystals.

SELECTION OF CITATIONS
SEARCH DETAIL
...