Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Am J Physiol Renal Physiol ; 295(4): F1177-90, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18715941

ABSTRACT

Polyuria, hypernatremia, and hypovolemia are the major clinical signs of inherited nephrogenic diabetes insipidus (NDI). Hypernatremia is commonly considered a secondary sign caused by the net loss of water due to insufficient insertion of aquaporin-2 water channels into the apical membrane of the collecting duct cells. In the present study, we employed transcriptome-wide expression analysis to study gene expression in V2 vasopressin receptor (Avpr2)-deficient mice, an animal model for X-linked NDI. Gene expression changes in NDI mice indicate increased proximal tubular sodium reabsorption. Expression of several key genes including Na+-K+-ATPase and carbonic anhydrases was increased at the mRNA levels and accompanied by enhanced enzyme activities. In addition, altered expression was also observed for components of the eicosanoid and thyroid hormone pathways, including cyclooxygenases and deiodinases, in both kidney and hypothalamus. These effects are likely to contribute to the clinical NDI phenotype. Finally, our data highlight the involvement of the renin-angiotensin-aldosterone system in NDI pathophysiology and provide clues to explain the effectiveness of diuretics and indomethacin in the treatment of NDI.


Subject(s)
Diabetes Insipidus, Nephrogenic/physiopathology , Hypothalamus/physiology , Kidney Tubules, Proximal/physiology , Oligonucleotide Array Sequence Analysis , Receptors, Vasopressin/genetics , Water-Electrolyte Balance/physiology , Animals , Diabetes Insipidus, Nephrogenic/metabolism , Disease Models, Animal , Female , Gene Expression/physiology , Gene Expression Profiling , Homeostasis/physiology , Hypernatremia/metabolism , Hypernatremia/physiopathology , Mice , Receptors, Vasopressin/deficiency , Signal Transduction/physiology , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism
2.
Eur J Cell Biol ; 87(5): 311-23, 2008 May.
Article in English | MEDLINE | ID: mdl-18387691

ABSTRACT

The protease cathepsin D (Cath D) and its proteolytically inactive proform, procathepsin D (ProCath D), turned out to be multifunctional within and outside the cell. Elevated levels of ProCath D occur in malignant tumors and in organs under chronic inflammation. One important source for this increase of ProCath D might be endothelial cells. Here we examined the expression of Cath D in the human endothelial cell line EA.hy 926 and in primary endothelial cells isolated from human umbilical cord veins (HUVEC). After serum-free incubation with or without human interferon-gamma (hIFN-gamma) and/or human tumor necrosis factor-alpha (hTNF-alpha) immature and mature Cath D forms were examined in cell extracts and in cell-conditioned medium concentrates by Western blotting. Lysates of EA.hy 926 cells as well as of HUVEC contained active Cath D as two-chain form, but only negligible amounts of ProCath D and Cath D intermediates. Yet both endothelial cell cultures accumulated ProCath D in their conditioned media in the absence of any stimulus. The treatment with hIFN-gamma and/or hTNF-alpha had little effect on intracellular levels of Cath D, whereas the cytokine stimulation increased the extracellular presence of ProCath D in both endothelial cell cultures. The extracellular increase of ProCath D was not related to induction of apoptosis, as validated by cleaved caspase-3 in cell lysates. Acidification of cytokine-treated media converted ProCath D into Cath D, which was associated with cathepsin-like activity using a fluorogenic substrate-linked assay. We conclude, in vitro, endothelial cells are a cytokine-dependent source for extracellular ProCath D.


Subject(s)
Cathepsin D/metabolism , Endothelial Cells/drug effects , Enzyme Precursors/metabolism , Gene Expression Regulation/drug effects , Interferon-gamma/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , Apoptosis/drug effects , Aspartic Acid Endopeptidases/metabolism , Cathepsin D/genetics , Cell Line , Cells, Cultured , Culture Media , Endothelial Cells/cytology , Enzyme Precursors/genetics , Extracellular Space , Humans , Hydrogen-Ion Concentration
3.
Expert Rev Endocrinol Metab ; 1(6): 727-741, 2006 Nov.
Article in English | MEDLINE | ID: mdl-30754158

ABSTRACT

Maintenance of water and electrolyte homeostasis is central to mammalian survival and, therefore, under stringent hormonal control. Water homeostasis is achieved by balancing fluid intake with water excretion, governed by the antidiuretic action of arginine vasopressin. Arginine vasopressin stimulation of renal V2 vasopressin receptors in the basolateral membrane of principal cells induces aquaporin-2-mediated water reabsorption in the kidney. The importance of this system is apparent when mutations inactivate V2 vasopressin receptors and aquaporin-2 and cause the clinical phenotype of nephrogenic diabetes insipidus. To date, over 190 mutations in the V2 vasopressin receptors gene (AVPR2) and approximately 38 mutations in the aquaporin-2 gene have been identified in patients with inherited nephrogenic diabetes insipidus. Extensive in vitro expression and mutagenesis studies of V2 vasopressin receptors and aquaporin-2 have provided detailed insights into the molecular mechanisms of G-protein-coupled receptor and water channel dysfunction per se. Targeted deletions of AVPR2 and AQP2 in mice have extended the knowledge of nephrogenic diabetes insipidus pathophysiology and have stimulated testing of old and new ideas to therapeutically restore normal kidney function in animal models and patients with this disease. In this review, we summarize the current knowledge relevant to understand the molecular basis of inherited nephrogenic diabetes insipidus forms and the rationales for the current pharmacological treatment of patients with this illness.

SELECTION OF CITATIONS
SEARCH DETAIL
...