Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Theranostics ; 3(9): 719-28, 2013.
Article in English | MEDLINE | ID: mdl-24019856

ABSTRACT

Metabolomic profiling is ideally suited for the analysis of cardiac metabolism in healthy and diseased states. Here, we show that systematic discovery of biomarkers of ischemic preconditioning using metabolomics can be translated to potential nanotheranostics. Thirty-three patients underwent percutaneous coronary intervention (PCI) after myocardial infarction. Blood was sampled from catheters in the coronary sinus, aorta and femoral vein before coronary occlusion and 20 minutes after one minute of coronary occlusion. Plasma was analysed using GC-MS metabolomics and iTRAQ LC-MS/MS proteomics. Proteins and metabolites were mapped into the Metacore network database (GeneGo, MI, USA) to establish functional relevance. Expression of 13 proteins was significantly different (p<0.05) as a result of PCI. Included amongst these was CD44, a cell surface marker of reperfusion injury. Thirty-eight metabolites were identified using a targeted approach. Using PCA, 42% of their variance was accounted for by 21 metabolites. Multiple metabolic pathways and potential biomarkers of cardiac ischemia, reperfusion and preconditioning were identified. CD44, a marker of reperfusion injury, and myristic acid, a potential preconditioning agent, were incorporated into a nanotheranostic that may be useful for cardiovascular applications. Integrating biomarker discovery techniques into rationally designed nanoconstructs may lead to improvements in disease-specific diagnosis and treatment.


Subject(s)
Biomarkers/blood , Metabolome , Myocardial Ischemia/diagnosis , Myocardial Ischemia/physiopathology , Proteome , Quantum Dots/metabolism , Silicon/metabolism , Bioengineering/methods , Chromatography, Liquid , Gas Chromatography-Mass Spectrometry , Humans , Plasma/chemistry , Quantum Dots/chemistry , Silicon/chemistry , Tandem Mass Spectrometry
2.
Int J Neural Syst ; 22(4): 1250012, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22830962

ABSTRACT

Spiking Neural Networks (SNN) were shown to be suitable tools for the processing of spatio-temporal information. However, due to their inherent complexity, the formulation of efficient supervised learning algorithms for SNN is difficult and remains an important problem in the research area. This article presents SPAN - a spiking neuron that is able to learn associations of arbitrary spike trains in a supervised fashion allowing the processing of spatio-temporal information encoded in the precise timing of spikes. The idea of the proposed algorithm is to transform spike trains during the learning phase into analog signals so that common mathematical operations can be performed on them. Using this conversion, it is possible to apply the well-known Widrow-Hoff rule directly to the transformed spike trains in order to adjust the synaptic weights and to achieve a desired input/output spike behavior of the neuron. In the presented experimental analysis, the proposed learning algorithm is evaluated regarding its learning capabilities, its memory capacity, its robustness to noisy stimuli and its classification performance. Differences and similarities of SPAN regarding two related algorithms, ReSuMe and Chronotron, are discussed.


Subject(s)
Action Potentials/physiology , Association Learning/physiology , Models, Neurological , Nerve Net/physiology , Neurons/physiology , Algorithms , Animals , Artificial Intelligence , Time Factors
3.
Int J Neural Syst ; 20(6): 481-500, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21117271

ABSTRACT

The construction of a Spiking Neural Network (SNN), i.e. the choice of an appropriate topology and the configuration of its internal parameters, represents a great challenge for SNN based applications. Evolutionary Algorithms (EAs) offer an elegant solution for these challenges and methods capable of exploring both types of search spaces simultaneously appear to be the most promising ones. A variety of such heterogeneous optimization algorithms have emerged recently, in particular in the field of probabilistic optimization. In this paper, a literature review on heterogeneous optimization algorithms is presented and an example of probabilistic optimization of SNN is discussed in detail. The paper provides an experimental analysis of a novel Heterogeneous Multi-Model Estimation of Distribution Algorithm (hMM-EDA). First, practical guidelines for configuring the method are derived and then the performance of hMM-EDA is compared to state-of-the-art optimization algorithms. Results show hMM-EDA as a light-weight, fast and reliable optimization method that requires the configuration of only very few parameters. Its performance on a synthetic heterogeneous benchmark problem is highly competitive and suggests its suitability for the optimization of SNN.


Subject(s)
Action Potentials/physiology , Models, Neurological , Models, Statistical , Nerve Net/cytology , Neurons/physiology , Algorithms , Animals , Humans , Neural Networks, Computer
4.
Neural Netw ; 22(5-6): 623-32, 2009.
Article in English | MEDLINE | ID: mdl-19615855

ABSTRACT

This study introduces a quantum-inspired spiking neural network (QiSNN) as an integrated connectionist system, in which the features and parameters of an evolving spiking neural network are optimized together with the use of a quantum-inspired evolutionary algorithm. We propose here a novel optimization method that uses different representations to explore the two search spaces: A binary representation for optimizing feature subsets and a continuous representation for evolving appropriate real-valued configurations of the spiking network. The properties and characteristics of the improved framework are studied on two different synthetic benchmark datasets. Results are compared to traditional methods, namely a multi-layer-perceptron and a naïve Bayesian classifier (NBC). A previously used real world ecological dataset on invasive species establishment prediction is revisited and new results are obtained and analyzed by an ecological expert. The proposed method results in a much faster convergence to an optimal solution (or a close to it), in a better accuracy, and in a more informative set of features selected.


Subject(s)
Action Potentials , Artificial Intelligence , Models, Statistical , Neural Networks, Computer , Algorithms , Animals , Bayes Theorem , Ceratitis capitata , Databases, Factual , Ecosystem , Humans , Neurons/physiology , Normal Distribution , Software , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...