Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 582, 2022 Jan 31.
Article in English | MEDLINE | ID: mdl-35102144

ABSTRACT

Spreading centre jumps are a common feature of oceanic back-arc basins. Jumps are conventionally suggested to be triggered by plate velocity changes, pre-existing weaknesses, or punctuated events such as the opening of slab windows. Here, we present 3D numerical models of back-arc spreading centre jumps evolving naturally in a homogeneous subduction system surrounded by continents without a trigger event. Spreading centres jump towards their subduction zone if the distance from trench to spreading centre becomes too long. In particular, jumps to a new spreading centre occur when the resistance on the boundary transform faults enabling relative motion of back-arc and neighbouring plates is larger than the resistance to break the overriding plate closer to trench. Time and distance of spreading centres jumps are, thus, controlled by the ratio between the transform fault and overriding plate strengths. Despite being less complex than natural systems, our models explain why narrow subducting plates (e.g. Calabrian slab), have more frequent and closely-spaced spreading jumps than wider subduction zones (e.g. Scotia). It also explains why wide back-arc basins undergo no spreading centre jumps in their life cycle.

2.
Geochem Geophys Geosyst ; 21(2): e2019GC008678, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32714097

ABSTRACT

The important role played by the upper plate in convergence zones dynamics has long been underestimated but is now more and more emphasized. However, the influence of its thickness and/or strength on orogenic systems evolution remains largely unknown. Here we present results from 3D thermo-mechanical numerical simulations of convergence zones (including oceanic subduction followed by continental subduction/collision), in which we vary the rheological profile of the overriding plate (OP). For this, we systematically modify the crustal thickness of the overriding lithosphere and the temperature at the Moho to obtain a thermal thickness of the overriding lithosphere ranging from 80 to 180 km. While all models share a common global evolution (i.e., slab sinking, interaction between slab and the 660 km discontinuity, continental subduction/collision, and slab breakoff), they also highlight first-order differences arising from the variations in the OP strength (thermal thickness). With a thin/weak OP, slab rollback is favored, the slab dip is low, the mantle flow above the slab is vigorous, and the trench migrates at a high rate compared to a thick/strong OP. In addition, slab breakoff and back-arc basin formation events occur significantly earlier than in models involving a thick OP. Our models therefore highlight the major role played by the thickness/strength of the OP on convergence zone dynamics and illustrate its influence in a quantitative way.

3.
Geochem Geophys Geosyst ; 20(11): 4693-4709, 2019 Nov.
Article in English | MEDLINE | ID: mdl-32025224

ABSTRACT

During continental collision, considerable amounts of buoyant continental crust subduct to depth and subsequently exhume. Whether various exhumation paths contribute to contrasting styles of magmatism across modern collision zones is unclear. Here we present 2D thermomechanical models of continental collision combined with petrological databases to investigate the effect of the main contrasting buoyancy forces, in the form of continental crustal buoyancy versus oceanic slab age (i.e., its thickness). We specifically focus on the consequences for crustal exhumation mechanisms and magmatism. Results indicate that it is mainly crustal density that determines the degree of steepening of the subducting continent and separates the models' parameter space into two regimes. In the first regime, high buoyancy values (∆ρ > 500 kg/m3) steepen the slab most rapidly (to 45-58°), leading to opening of a gap in the subduction channel through which the subducted crust exhumes ("subduction channel crustal exhumation"). A shift to a second regime ("underplating") occurs when the density contrast is reduced by 50 kg/m3. In this scenario, the slab steepens less (to 37-50°), forcing subducted crust to be placed below the overriding plate. Importantly, the magmatism changes in the two cases: Crustal exhumation through the subduction channel is mainly accompanied by a narrow band of mantle melts, while underplating leads to widespread melting of mixed sources. Finally, we suggest that the amount (or density) of subducted continental crust, and the resulting buoyancy forces, could contribute to contrasting collision styles and magmatism in the Alps and Himalayas/Tibet.

SELECTION OF CITATIONS
SEARCH DETAIL
...