Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Metab ; 43: 101112, 2021 01.
Article in English | MEDLINE | ID: mdl-33157254

ABSTRACT

OBJECTIVE: Metabolic diseases are an increasing problem in society with the brain-metabolic axis as a master regulator of the human body for sustaining homeostasis under metabolic stress. However, metabolic inflammation and disease will trigger sustained activation of the hypothalamic-pituitary-adrenal axis. In this study, we investigated the role of metabolic stress on progenitor cells in the hypothalamic-pituitary-adrenal axis. METHODS: In vitro, we applied insulin and leptin to murine progenitor cells isolated from the pituitary and adrenal cortex and examined the role of these hormones on proliferation and differentiation. In vivo, we investigated two different mouse models of metabolic disease, obesity in leptin-deficient ob/ob mice and obesity achieved via feeding with a high-fat diet. RESULTS: Insulin was shown to lead to enhanced proliferation and differentiation of both pituitary and adrenocortical progenitors. No alterations in the progenitors were noted in our chronic metabolic stress models. However, hyperactivation of the hypothalamic-pituitary-adrenal axis was observed and the expression of the appetite-regulating genes Npy and Agrp changed in both the hypothalamus and adrenal. CONCLUSIONS: It is well-known that chronic stress and stress hormones such as glucocorticoids can induce metabolic changes including obesity and diabetes. In this article, we show for the first time that this might be based on an early sensitization of stem cells of the hypothalamic-pituitary-adrenal axis. Thus, pituitary and adrenal progenitor cells exposed to high levels of insulin are metabolically primed to a hyper-functional state leading to enhanced hormone production. Likewise, obese animals exhibit a hyperactive hypothalamic-pituitary-adrenal axis leading to adrenal hyperplasia. This might explain how stress in early life can increase the risk for developing metabolic syndrome in adulthood.


Subject(s)
Insulin/metabolism , Obesity/metabolism , Stem Cells/physiology , Stress, Physiological/physiology , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Female , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiology , Insulin/pharmacology , Leptin/metabolism , Leptin/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Mice, Transgenic , Pituitary-Adrenal System/metabolism , Pituitary-Adrenal System/physiology , Stem Cells/drug effects , Stem Cells/metabolism
2.
Am J Physiol Heart Circ Physiol ; 317(2): H243-H254, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31149843

ABSTRACT

Vessels of female rats constrict less and relax more to adrenergic stimulation than vessels of males. Although we have reported that these sex-specific differences rely on endothelial ß-adrenoceptors, the role of sex hormones in ß-adrenoceptor expression and related vessel tone regulation is unknown. We investigated the role of estrogen, progesterone and testosterone on ß-adrenoceptor expression and adrenergic vessel tone regulation, along with sex-specific differences in human mammary arteries. The sex-specific differences in vasoconstriction and vasorelaxation in rat vessels were eliminated after ovariectomy in females. Ovariectomy increased vessel vasoconstriction to norepinephrine more than twofold. Vasorelaxations by isoprenaline and a ß3-agonist were reduced after ovariectomy. Estrogen, but not progesterone substitution, restored sex-specific differences in vasoconstriction and vasorelaxation. Vascular mRNA levels of ß1- and ß3- but not ß2-adrenoreceptors were higher in vessels of females compared with males. Ovariectomy reduced these differences by decreasing ß1- and ß3- but not ß2-adrenoreceptor expression in females. Consistently, estrogen substitution restored ß1- and ß3-adrenoreceptor expression. Orchiectomy or testosterone treatment affected neither vasoconstriction and vasorelaxation nor ß-adrenoceptor expression in vessels of male rats. In human mammary arteries, sex-specific differences in vasoconstriction and vasorelaxation were reduced after removal of endothelium or treatment with l-NMMA. Vessels of women showed higher levels of ß1- and ß3-adrenoceptors than in men. In conclusion, the sex-specific differences in vasoconstriction and vasorelaxation are common for rat and human vessels. In rats, these differences are estrogen but not testosterone or progesterone dependent. Estrogen determines these differences via regulation of vascular endothelial ß1- and ß3-adrenoreceptor expression. NEW & NOTEWORTHY This study proposes a mechanistic concept regulating sex-specific differences in adrenergic vasoconstriction and vasorelaxation. Estrogen increases vascular ß1- and ß3-adrenoceptor expression in female rats. This and our previous studies demonstrate that these receptors are located primarily on endothelium and when activated by norepinephrine act via nitric oxide (NO). Therefore, ß-adrenergic stimulation leads to a more pronounced vasorelaxation in females. Coactivation of endothelial ß1- and ß3-adrenoreceptors leads to higher NO release in vessels of females, ultimately blunting vasoconstriction triggered by activation of smooth muscle α-adrenoceptors.


Subject(s)
Endothelium, Vascular/drug effects , Estradiol/administration & dosage , Estrogen Replacement Therapy , Mammary Arteries/drug effects , Receptors, Adrenergic, beta/metabolism , Vasoconstriction/drug effects , Vasodilation/drug effects , Vasomotor System/drug effects , Animals , Endothelium, Vascular/metabolism , Female , Humans , Male , Mammary Arteries/metabolism , Middle Aged , Orchiectomy , Ovariectomy , Progesterone/administration & dosage , Rats, Wistar , Receptors, Adrenergic, beta/genetics , Receptors, Adrenergic, beta-1/metabolism , Receptors, Adrenergic, beta-3/metabolism , Sex Factors , Signal Transduction , Testosterone Propionate/administration & dosage , Vasomotor System/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...