Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Pestic Biochem Physiol ; 171: 104717, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33357567

ABSTRACT

The rusty grain beetle, Cryptolestes ferrugineus, a major pest of stored commodities, has developed very high levels (>1000×) of resistance to the fumigant phosphine. Resistance in this species is remarkably stronger than reported in any other stored product pests demanding the need to understand the molecular basis of this trait. Previous genetic studies in other grain insect pests identified specific variants in two major genes, rph1 and rph2 in conferring the strong resistance trait. However, in C. ferrugineus, although the gene, rph1 was identified as cytochrome-b5-fatty acid desaturase, the rph2 gene has not been reported so far. We tested the candidate gene for rph2, dihydrolipoamide dehydrogenase (dld) using the recently published transcriptome of C. ferrugineus and identified three variants, L73N and A355G + D360H, a haplotype, conferring resistance in this species. Our sequence analysis in resistant strain and phosphine selected resistant survivors indicates that these variants occur either alone as a homozygote or a mixture of heterozygotes (i.e complex heterozygotes) both conferring strong resistance. We also found that one of the three variants, possibly L73N expressing "dominant" trait at low frequency in resistant insects. Comparison of dld sequences between Australian and Chinese resistant strain of this species confirmed that the identified variants are highly conserved. Our fitness analysis indicated that resistant insects may not incur significant biological costs in the absence of phosphine selection for 19 generations. Thus, we propose that the observed high levels of resistance in C. ferrugineus could be primarily due to the characteristics of three unique variants, L73N and A355G + D360H within dld.


Subject(s)
Coleoptera , Insecticides , Phosphines , Animals , Australia , Coleoptera/genetics , Dihydrolipoamide Dehydrogenase/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Phosphines/pharmacology
2.
Pest Manag Sci ; 75(4): 1091-1098, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30255667

ABSTRACT

BACKGROUND: Next-generation sequencing can enable genetic surveys of large numbers of individuals. We developed a genotyping-by-sequencing assay for detecting strong phosphine resistance alleles in the dihydrolipoamide dehydrogenase (dld) gene of Rhyzopertha dominica populations. The assay can estimate the distribution and frequency of resistance variants in thousands of individual insects in a single run. RESULTS: We analysed 1435 individual insects collected over a 1-year period from 59 grain-storage sites including farms (n = 29) and central storages (n = 30) across eastern Australia. Resistance alleles were detected in 49% of samples, 38% of farms and 60% of central storages. Although multiple alleles were detected, only two resistance variants (P49S and K142E) were widespread and each appeared to have a distinct but overlapping geographical distribution. CONCLUSION: The type of structure in which the grain is stored had a strong effect on resistance allele frequency. We observed higher frequencies of resistance alleles in bunker storages at central sites compared with other storage types. This contributed to the higher frequencies of resistance alleles in bulk-handling facilities relative to farms. The discovery of a storage structure that predisposes insects to resistance highlights the utility of our high-throughput assay system for improvement of phosphine resistance management practices. © 2018 Society of Chemical Industry.


Subject(s)
Coleoptera/genetics , Dihydrolipoamide Dehydrogenase/genetics , High-Throughput Nucleotide Sequencing/methods , Insect Proteins/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Phosphines/pharmacology , Animals , Coleoptera/drug effects , Coleoptera/enzymology , Dihydrolipoamide Dehydrogenase/metabolism , Insect Control , Insect Proteins/metabolism , New South Wales , Queensland
3.
Genetics ; 209(1): 281-290, 2018 05.
Article in English | MEDLINE | ID: mdl-29496747

ABSTRACT

Next-generation sequencing methods enable identification of the genetic basis of traits in species that have no prior genomic information available. The combination of next-generation sequencing, variant analysis, and linkage is a powerful way of identifying candidate genes for a trait of interest. Here, we used a comparative transcriptomics [RNA sequencing (RNAseq)] and genetic linkage analysis approach to identify the rph1 gene. rph1 variants are responsible for resistance to the fumigant phosphine (PH3) that is used to control insect pests of stored grain. In each of the four major species of pest insect of grain we have investigated, there are two major resistance genes, rph1 and rph2, which interact synergistically to produce strongly phosphine-resistant insects. Using RNAseq and genetic linkage analyses, we identified candidate resistance (rph1) genes in phosphine-resistant strains of three species: Rhyzopertha dominica (129 candidates), Sitophilus oryzae (206 candidates), and Cryptolestes ferrugineus (645 candidates). We then compared these candidate genes to 17 candidate resistance genes previously mapped in Tribolium castaneum and found only one orthologous gene, a cytochrome b5 fatty acid desaturase (Cyt-b5-r), to be associated with the rph1 locus in all four species. This gene had either missense amino acid substitutions and/or insertion/deletions/frameshift variants in each of 18 phosphine-resistant strains that were not observed in the susceptible strains of the four species. We propose a model of phosphine action and resistance in which phosphine induces lipid peroxidation through reactive oxygen species generated by dihydrolipoamide dehydrogenase, whereas disruption of Cyt-b5-r in resistant insects decreases the polyunsaturated fatty acid content of membranes, thereby limiting the potential for lipid peroxidation.


Subject(s)
Genetic Linkage , High-Throughput Nucleotide Sequencing , Insecta/drug effects , Insecta/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Phosphines/pharmacology , Transcriptome , Animals , Gene Expression Profiling , Genes, Insect , Phenotype , Polymorphism, Single Nucleotide
4.
Pestic Biochem Physiol ; 127: 67-75, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26821660

ABSTRACT

Inheritance of resistance to phosphine fumigant was investigated in three field-collected strains of rusty grain beetle, Cryptolestes ferrugineus, Susceptible (S-strain), Weakly Resistant (Weak-R) and Strongly Resistant (Strong-R). The strains were purified for susceptibility, weak resistance and strong resistance to phosphine, respectively, to ensure homozygosity of resistance genotype. Crosses were established between S-strain×Weak-R, S-strain×Strong-R and Weak-R×Strong-R, and the dose mortality responses to phosphine of these strains and their F1, F2 and F1-backcross progeny were obtained. The fumigations were undertaken at 25°C and 55% RH for 72h. Weak-R and Strong-R showed resistance factors of 6.3× and 505× compared with S-strain at the LC50. Both weak and strong resistances were expressed as incompletely recessive with degrees of dominance of -0.48 and -0.43 at the LC50, respectively. Responses of F2 and F1-backcross progeny indicated the existence of one major gene in Weak-R, and at least two major genes in Strong-R, one of which was allelic with the major factor in Weak-R. Phenotypic variance analyses also estimated that the number of independently segregating genes conferring weak resistance was 1 (nE=0.89) whereas there were two genes controlling strong resistance (nE=1.2). The second gene, unique to Strong-R, interacted synergistically with the first gene to confer a very high level of resistance (~80×). Neither of the two major resistance genes was sex linked. Despite the similarity of the genetics of resistance to that previously observed in other pest species, a significant proportion (~15 to 30%) of F1 individuals survived at phosphine concentrations higher than predicted. Thus it is likely that additional dominant heritable factors, present in some individuals in the population, also influenced the resistance phenotype. Our results will help in understanding the process of selection for phosphine resistance in the field which will inform resistance management strategies. In addition, this information will provide a basis for the identification of the resistance genes.


Subject(s)
Coleoptera/drug effects , Insecticides/pharmacology , Phosphines/pharmacology , Animals , Coleoptera/genetics , Heterozygote
5.
J Hered ; 107(3): 228-37, 2016 May.
Article in English | MEDLINE | ID: mdl-26774057

ABSTRACT

High levels of resistance to phosphine in the rice weevil Sitophilus oryzae have been detected in Asian countries including China and Vietnam, however there is limited knowledge of the genetic mechanism of resistance in these strains. We find that the genetic basis of strong phosphine resistance is conserved between strains of S. oryzae from China, Vietnam, and Australia. Each of 4 strongly resistant strains has an identical amino acid variant in the encoded dihydrolipoamide dehydrogenase (DLD) enzyme that was previously identified as a resistance factor in Rhyzopertha dominica and Tribolium castaneum. The unique amino acid substitution, Asparagine > Threonine (N505T) of all strongly resistant S. oryzae corresponds to the position of an Asparagine > Histidine variant (N506H) that was previously reported in strongly resistant R. dominica. Progeny (F16 and F18) from 2 independent crosses showed absolute linkage of N505T to the strong resistance phenotype, indicating that if N505T was not itself the resistance variant that it resided within 1 or 2 genes of the resistance factor. Non-complementation between the strains confirmed the shared genetic basis of strong resistance, which was supported by the very similar level of resistance between the strains, with LC50 values ranging from 0.20 to 0.36 mg L(-1) for a 48-h exposure at 25 °C. Thus, the mechanism of high-level resistance to phosphine is strongly conserved between R. dominica, T. castaneum and S. oryzae. A fitness cost associated with strongly resistant allele was observed in segregating populations in the absence of selection.


Subject(s)
Dihydrolipoamide Dehydrogenase/genetics , Insecticide Resistance/genetics , Phosphines , Weevils/genetics , Alleles , Amino Acid Sequence , Amino Acid Substitution , Animals , Australia , China , Genetic Complementation Test , Genetic Fitness , Genetic Linkage , Molecular Sequence Data , Oryza , Phenotype , Polymorphism, Single Nucleotide , Sequence Alignment , Sequence Analysis, RNA , Transcriptome , Vietnam , Weevils/enzymology
6.
J Econ Entomol ; 106(5): 2259-66, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24224272

ABSTRACT

Phosphine resistance alleles might be expected to negatively affect energy demanding activities such as walking and flying, because of the inverse relationship between phosphine resistance and respiration. We used an activity monitoring system to quantify walking of Rhyzopertha dominica (F.) and a flight chamber to estimate their propensity for flight initiation. No significant difference in the duration of walking was observed between the strongly resistant, weakly resistant, and susceptible strains of R. dominica we tested, and females walked significantly more than males regardless of genotype. The walking activity monitor revealed no pattern of movement across the day and no particular time of peak activity despite reports of peak activity of R. dominica and Tribolium castaneum (Herbst) under field conditions during dawn and dusk. Flight initiation was significantly higher for all strains at 28 degrees C and 55% relative humidity than at 25, 30, 32, and 35 degrees C in the first 24 h of placing beetles in the flight chamber. Food deprivation and genotype had no significant effect on flight initiation. Our results suggest that known resistance alleles in R. dominica do not affect insect mobility and should therefore not inhibit the dispersal of resistant insects in the field.


Subject(s)
Coleoptera/physiology , Insecticide Resistance , Insecticides/pharmacology , Phosphines/pharmacology , Animal Distribution , Animals , Coleoptera/drug effects , Coleoptera/genetics , Female , Food Deprivation , Male
7.
BMC Genomics ; 14: 650, 2013 Sep 24.
Article in English | MEDLINE | ID: mdl-24059691

ABSTRACT

BACKGROUND: Next-generation sequencing technology is an important tool for the rapid, genome-wide identification of genetic variations. However, it is difficult to resolve the 'signal' of variations of interest and the 'noise' of stochastic sequencing and bioinformatic errors in the large datasets that are generated. We report a simple approach to identify regional linkage to a trait that requires only two pools of DNA to be sequenced from progeny of a defined genetic cross (i.e. bulk segregant analysis) at low coverage (<10×) and without parentage assignment of individual SNPs. The analysis relies on regional averaging of pooled SNP frequencies to rapidly scan polymorphisms across the genome for differential regional homozygosity, which is then displayed graphically. RESULTS: Progeny from defined genetic crosses of Tribolium castaneum (F4 and F19) segregating for the phosphine resistance trait were exposed to phosphine to select for the resistance trait while the remainders were left unexposed. Next generation sequencing was then carried out on the genomic DNA from each pool of selected and unselected insects from each generation. The reads were mapped against the annotated T. castaneum genome from NCBI (v3.0) and analysed for SNP variations. Since it is difficult to accurately call individual SNP frequencies when the depth of sequence coverage is low, variant frequencies were averaged across larger regions. Results from regional SNP frequency averaging identified two loci, tc_rph1 on chromosome 8 and tc_rph2 on chromosome 9, which together are responsible for high level resistance. Identification of the two loci was possible with only 5-7× average coverage of the genome per dataset. These loci were subsequently confirmed by direct SNP marker analysis and fine-scale mapping. Individually, homozygosity of tc_rph1 or tc_rph2 results in only weak resistance to phosphine (estimated at up to 1.5-2.5× and 3-5× respectively), whereas in combination they interact synergistically to provide a high-level resistance >200×. The tc_rph2 resistance allele resulted in a significant fitness cost relative to the wild type allele in unselected beetles over eighteen generations. CONCLUSION: We have validated the technique of linkage mapping by low-coverage sequencing of progeny from a simple genetic cross. The approach relied on regional averaging of SNP frequencies and was used to successfully identify candidate gene loci for phosphine resistance in T. castaneum. This is a relatively simple and rapid approach to identifying genomic regions associated with traits in defined genetic crosses that does not require any specialised statistical analysis.


Subject(s)
Chromosome Mapping/methods , Genetic Loci/genetics , Genome, Insect/genetics , Insecticide Resistance/genetics , Phosphines/toxicity , Tribolium/genetics , Animals , Chromosomes, Insect/genetics , Crosses, Genetic , Epistasis, Genetic , Female , Genetic Association Studies , Genetic Fitness , Male , Physical Chromosome Mapping , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Tribolium/drug effects
8.
Physiol Genomics ; 45(10): 377-88, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23548685

ABSTRACT

Green-striped burrowing frogs (Cyclorana alboguttata) survive in arid environments by burrowing underground and entering into a deep, prolonged metabolic depression known as estivation. Throughout estivation, C. alboguttata is immobilized within a cast-like cocoon of shed skin and ceases feeding and moving. Remarkably, these frogs exhibit very little muscle atrophy despite extended disuse and fasting. Little is known about the transcriptional regulation of estivation or associated mechanisms that may minimize degradative pathways of atrophy. To investigate transcriptional pathways associated with metabolic depression and maintenance of muscle function in estivating burrowing frogs, we assembled a skeletal muscle transcriptome using next-generation short read sequencing and compared gene expression patterns between active and 4 mo estivating C. alboguttata. This identified a complex suite of gene expression changes that occur in muscle during estivation and provides evidence that estivation in burrowing frogs involves transcriptional regulation of genes associated with cytoskeletal remodeling, avoidance of oxidative stress, energy metabolism, the cell stress response, and apoptotic signaling. In particular, the expression levels of genes encoding cell cycle and prosurvival proteins, such as serine/threonine-protein kinase Chk1, cell division protein kinase 2, survivin, and vesicular overexpressed in cancer prosurvival protein 1, were upregulated during estivation. These data suggest that estivating C. alboguttata are able to regulate the expression of genes in several major cellular pathways critical to the survival and viability of cells, thus preserving muscle function while avoiding the deleterious consequences often seen in laboratory models of muscle disuse.


Subject(s)
Anura/genetics , Estivation/genetics , Muscle, Skeletal/metabolism , Transcriptome , Analysis of Variance , Animals , Anura/metabolism , Basal Metabolism , Gene Ontology , High-Throughput Nucleotide Sequencing , Muscle, Skeletal/anatomy & histology , Organ Size , Oxygen Consumption
9.
Pest Manag Sci ; 69(6): 685-8, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23408750

ABSTRACT

BACKGROUND: The lesser grain borer, Rhyzopertha dominica (F.), is a highly destructive pest of stored grain that is strongly resistant to the fumigant phosphine (PH3 ). Phosphine resistance is due to genetic variants at the rph2 locus that alter the function of the dihydrolipoamide dehydrogenase (DLD) gene. This discovery now enables direct detection of resistance variants at the rph2 locus in field populations. RESULTS: A genotype assay was developed for direct detection of changes in distribution and frequency of a phosphine resistance allele in field populations of R. dominica. Beetles were collected from ten farms in south-east Queensland in 2006 and resampled in 2011. Resistance allele frequency increased in the period from 2006 to 2011 on organic farms with no history of phosphine use, implying that migration of phosphine-resistant R. dominica had occurred from nearby storages. CONCLUSION: Increasing resistance allele frequencies on organic farms suggest local movement of beetles and dispersal of insects from areas where phosphine has been used. This research also highlighted for the first time the utility of a genetic DNA marker in accurate and rapid determination of the distribution of phosphine-resistant insects in the grain value chain. Extending this research over larger landscapes would help in identifying resistance problems and enable timely pest management decisions.


Subject(s)
Coleoptera/genetics , Dihydrolipoamide Dehydrogenase/genetics , Edible Grain/parasitology , Insect Proteins/genetics , Insecticide Resistance , Insecticides/pharmacology , Phosphines/pharmacology , Alleles , Animals , Coleoptera/drug effects , Coleoptera/enzymology , Genetic Markers , Queensland
10.
Science ; 338(6108): 807-10, 2012 Nov 09.
Article in English | MEDLINE | ID: mdl-23139334

ABSTRACT

Phosphine is a small redox-active gas that is used to protect global grain reserves, which are threatened by the emergence of phosphine resistance in pest insects. We find that polymorphisms responsible for genetic resistance cluster around the redox-active catalytic disulfide or the dimerization interface of dihydrolipoamide dehydrogenase (DLD) in insects (Rhyzopertha dominica and Tribolium castaneum) and nematodes (Caenorhabditis elegans). DLD is a core metabolic enzyme representing a new class of resistance factor for a redox-active metabolic toxin. It participates in four key steps of core metabolism, and metabolite profiles indicate that phosphine exposure in mutant and wild-type animals affects these steps differently. Mutation of DLD in C. elegans increases arsenite sensitivity. This specific vulnerability may be exploited to control phosphine-resistant insects and safeguard food security.


Subject(s)
Caenorhabditis elegans/enzymology , Coleoptera/enzymology , Dihydrolipoamide Dehydrogenase/genetics , Insecticide Resistance/genetics , Insecticides , Phosphines , Tribolium/enzymology , Animals , Arsenicals/pharmacology , Arsenites/pharmacology , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Catalytic Domain , Coleoptera/drug effects , Coleoptera/genetics , Coleoptera/metabolism , Dihydrolipoamide Dehydrogenase/chemistry , Dihydrolipoamide Dehydrogenase/metabolism , Insect Proteins/chemistry , Insect Proteins/genetics , Insect Proteins/metabolism , Insecticides/pharmacology , Metabolic Networks and Pathways , Molecular Sequence Data , Mutation , Oxidation-Reduction , Pesticides , Phosphines/pharmacology , Polymorphism, Genetic , Protein Multimerization , Tribolium/drug effects , Tribolium/genetics , Tribolium/metabolism
11.
PLoS One ; 7(2): e31582, 2012.
Article in English | MEDLINE | ID: mdl-22363681

ABSTRACT

The recent emergence of heritable high level resistance to phosphine in stored grain pests is a serious concern among major grain growing countries around the world. Here we describe the genetics of phosphine resistance in the rust red flour beetle Tribolium castaneum (Herbst), a pest of stored grain as well as a genetic model organism. We investigated three field collected strains of T. castaneum viz., susceptible (QTC4), weakly resistant (QTC1012) and strongly resistant (QTC931) to phosphine. The dose-mortality responses of their test- and inter-cross progeny revealed that most resistance was conferred by a single major resistance gene in the weakly (3.2×) resistant strain. This gene was also found in the strongly resistant (431×) strain, together with a second major resistance gene and additional minor factors. The second major gene by itself confers only 12-20× resistance, suggesting that a strong synergistic epistatic interaction between the genes is responsible for the high level of resistance (431×) observed in the strongly resistant strain. Phosphine resistance is not sex linked and is inherited as an incompletely recessive, autosomal trait. The analysis of the phenotypic fitness response of a population derived from a single pair inter-strain cross between the susceptible and strongly resistant strains indicated the changes in the level of response in the strong resistance phenotype; however this effect was not consistent and apparently masked by the genetic background of the weakly resistant strain. The results from this work will inform phosphine resistance management strategies and provide a basis for the identification of the resistance genes.


Subject(s)
Epistasis, Genetic/drug effects , Genes, Insect/genetics , Genetic Fitness , Inheritance Patterns/genetics , Insecticide Resistance/genetics , Phosphines/toxicity , Tribolium/genetics , Animals , Chromosome Segregation/drug effects , Chromosome Segregation/genetics , Crosses, Genetic , Female , Flour , Inheritance Patterns/drug effects , Insecticide Resistance/drug effects , Male , Phenotype , Tribolium/drug effects
12.
PLoS One ; 7(12): e53356, 2012.
Article in English | MEDLINE | ID: mdl-23300916

ABSTRACT

The red flour beetle is a cosmopolitan pest of stored grain and stored grain products. The pest has developed resistance to phosphine, the primary chemical used for its control. The reproductive output of survivors from a phosphine treatment is an important element of resistance development but experimental data are lacking. We exposed mated resistant female beetles to 0.135 mg/L of phosphine for 48 h at 25 °C. Following one week of recovery we provided two non-exposed males to half of the phosphine exposed females and to half of the non-exposed control females. Females that had been exposed produced significantly fewer offspring than non-exposed females. Females that remained isolated produced significantly fewer offspring than both exposed females with access to males and non-exposed controls (P<0.05). Some females were permanently damaged from exposure to phosphine and did not reproduce even when given access to males. We also examined the additional effects of starvation prior to phosphine exposure on offspring production. Non-exposed starved females experienced a small reduction in mean offspring production in the week following starvation, followed by a recovery in the second week. Females that were starved and exposed to phosphine demonstrated a very significant reduction in offspring production in the first week following exposure which remained significantly lower than that of starved non-exposed females (P<0.05). These results demonstrate a clear sublethal effect of phosphine acting on the female reproductive system and in some individuals this can lead to permanent reproductive damage. Pest population rebound after a fumigation may be slower than expected which may reduce the rate of phosphine resistance development. The results presented strongly suggest that phosphine resistance models should include sublethal effects.


Subject(s)
Phosphines/pharmacology , Reproduction/drug effects , Tribolium/drug effects , Animals , Female
13.
J Toxicol ; 2011: 394970, 2011.
Article in English | MEDLINE | ID: mdl-22131987

ABSTRACT

Gasotransmitters are biologically produced gaseous signalling molecules. As gases with potent biological activities, they are toxic as air pollutants, and the sulfurous compounds are used as fumigants. Most investigations focus on medical aspects of gasotransmitter biology rather than toxicity toward invertebrate pests of agriculture. In fact, the pathways for the metabolism of sulfur containing gases in lower organisms have not yet been described. To address this deficit, we use protein sequences from Homo sapiens to query Genbank for homologous proteins in Caenorhabditis elegans, Drosophila melanogaster, and Saccharomyces cerevisiae. In C. elegans, we find genes for all mammalian pathways for synthesis and catabolism of the three sulfur containing gasotransmitters, H(2)S, SO(2) and COS. The genes for H(2)S synthesis have actually increased in number in C. elegans. Interestingly, D. melanogaster and Arthropoda in general, lack a gene for 3-mercaptopyruvate sulfurtransferase, an enzym for H(2)S synthesis under reducing conditions.

14.
J Toxicol ; 2011: 494168, 2011.
Article in English | MEDLINE | ID: mdl-21776261

ABSTRACT

Fumigation with phosphine gas is by far the most widely used treatment for the protection of stored grain against insect pests. The development of high-level resistance in insects now threatens its continued use. As there is no suitable chemical to replace phosphine, it is essential to understand the mechanisms of phosphine toxicity to increase the effectiveness of resistance management. Because phosphine is such a simple molecule (PH(3)), the chemistry of phosphorus is central to its toxicity. The elements above and below phosphorus in the periodic table are nitrogen (N) and arsenic (As), which also produce toxic hydrides, namely, NH(3) and AsH(3). The three hydrides cause related symptoms and similar changes to cellular and organismal physiology, including disruption of the sympathetic nervous system, suppressed energy metabolism and toxic changes to the redox state of the cell. We propose that these three effects are interdependent contributors to phosphine toxicity.

15.
Genetics ; 161(2): 773-82, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12072472

ABSTRACT

High levels of inheritable resistance to phosphine in Rhyzopertha dominica have recently been detected in Australia and in an effort to isolate the genes responsible for resistance we have used random amplified DNA fingerprinting (RAF) to produce a genetic linkage map of R. dominica. The map consists of 94 dominant DNA markers with an average distance between markers of 4.6 cM and defines nine linkage groups with a total recombination distance of 390.1 cM. We have identified two loci that are responsible for high-level resistance. One provides approximately 50x resistance to phosphine while the other provides 12.5x resistance and in combination, the two genes act synergistically to provide a resistance level 250x greater than that of fully susceptible beetles. The haploid genome size has been determined to be 4.76 x 10(8) bp, resulting in an average physical distance of 1.2 Mbp per map unit. No recombination has been observed between either of the two resistance loci and their adjacent DNA markers in a population of 44 fully resistant F5 individuals, which indicates that the genes are likely to reside within 0.91 cM (1.1 Mbp) of the DNA markers.


Subject(s)
Chromosome Mapping , Coleoptera/genetics , Insecticide Resistance/genetics , Insecticides , Phosphines , Animals , Crosses, Genetic , DNA Fingerprinting , Flow Cytometry , Genetic Markers , Genome , Random Amplified Polymorphic DNA Technique
SELECTION OF CITATIONS
SEARCH DETAIL
...