Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Alcohol ; 18(2-3): 203-14, 1999.
Article in English | MEDLINE | ID: mdl-10456572

ABSTRACT

This study was designed to investigate the dose as well as time dependent effects of ethanol on testicular antioxidant defense system in rats. Male Fischer 344 rats were administered ethanol at a dose of 2, 4, and 6 gm/kg orally and control received equal volume of saline and sacrificed 1 h after ethanol ingestion. For time course study, animals were administered ethanol 4 g/kg orally and sacrificed at 1.5, 2, 4, and 6 h after ethanol ingestion. Testicular ethanol concentration increased with increasing doses of ethanol. Copper zinc-superoxide dismutase (CuZn-SOD) activity significantly decreased in the testes of rats treated with increasing doses of ethanol whereas manganese-superoxide dismutase (Mn-SOD) activity significantly increased in a dose dependent manner (181, 186, and 195% of control, respectively). Testicular glutathione (GSH) and malondialdehyde (MDA) levels did not significantly alter with increasing doses of ethanol one hour after ethanol ingestion. Ethanol concentration decreased in the testes with an increase in time after ethanol ingestion. Testicular CuZn-SOD activity significantly decreased whereas Mn-SOD activity increased with an increase in time after ethanol ingestion. Testicular catalase (CAT) activity significantly decreased at 2 h postethanol ingestion. Testicular MDA levels significantly increased at 4 and 6 h after ethanol ingestion indicating that end product of lipid peroxidation. MDA, takes considerable time to form in the testes. A significant decrease in the ratios of CAT/Mn-SOD and glutathione peroxidase (GSH-Px)/Mn-SOD in the testes of rat suggests the ability of mitochondria to scavenge reactive oxygen species (ROS). It is suggested that antioxidant enzyme ratios may be used as an important parameter to determine ethanol induced oxidative stress in the tissues.


Subject(s)
Antioxidants/metabolism , Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Superoxide Dismutase/drug effects , Testis/drug effects , Animals , Catalase/drug effects , Catalase/metabolism , Central Nervous System Depressants/administration & dosage , Dose-Response Relationship, Drug , Ethanol/administration & dosage , Glutathione/drug effects , Glutathione/metabolism , Male , Malondialdehyde/metabolism , Rats , Rats, Inbred F344 , Superoxide Dismutase/metabolism , Testis/metabolism , Time Factors
2.
Alcohol ; 17(2): 97-105, 1999 Feb.
Article in English | MEDLINE | ID: mdl-10064376

ABSTRACT

This study investigates the dose- as well as time-dependent effects of ethanol ingestion on antioxidant system and lipid peroxidation in plasma of the rat. The plasma ethanol concentrations were 154+/-18, 231+/-53, and 268+/-49 mg/dl 1 h after oral ethanol doses of 2, 4, and 6 g/kg, respectively. Superoxide dismutase (SOD) (71%, 56%, and 41 % of control) and glutathione reductase (GR) (71%, 66%, and 55% of control) activity in plasma were significantly decreased in a dose-dependent manner. Catalase (CAT)/SOD and glutathione peroxidase (GSH-Px)/SOD ratios were significantly increased whereas GR/GSH-Px ratio was significantly decreased with increasing dose of ethanol. In a time course study, plasma ethanol concentrations were 177+/-9.7, 143+/-11, 99+/-17, and 26+/-11 mg/dl at 1.5, 2, 4, and 6 h after an oral dose (4 g/kg) of ethanol in rat indicating time-dependent elimination of ethanol. Plasma SOD and GSH-Px activity significantly increased 4-6 h whereas GR activity significantly decreased 2-4 h after ethanol ingestion. The ratio of GR/GSH-Px and the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) in plasma decreased at 1.5-6 h after ethanol ingestion. Plasma malondialdehyde (MDA) levels significantly elevated with respect to an increase in time after ethanol ingestion, indicating time-dependent augmentation of lipid peroxidation. The data indicate that ethanol ingestion perturbs the plasma antioxidant system in a dose- and time-dependent manner. The significant changes in the ratios of CAT/SOD, GSH-Px/SOD, GR/GSH-Px, and GSH/GSSG in plasma may be used as an index of alcohol-induced oxidative stress.


Subject(s)
Antioxidants/metabolism , Ethanol/administration & dosage , Animals , Catalase/blood , Dose-Response Relationship, Drug , Ethanol/blood , Ethanol/pharmacology , Glutathione/blood , Glutathione Peroxidase/blood , Glutathione Reductase/blood , Kinetics , Lipid Peroxidation/drug effects , Male , Malondialdehyde/blood , Oxidation-Reduction , Rats , Rats, Inbred F344 , Superoxide Dismutase/blood
3.
Neurotoxicology ; 20(6): 977-87, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10693979

ABSTRACT

This study investigated the response of the antioxidant defense system in brain subcellular fractions after oral graded doses of ethanol to rat. Four groups of male Fischer-344 rats were orally administered saline, ethanol 2 g, 4 g, and 6 g/kg, respectively, and sacrificed 1 hour post treatment. Brain cytosol, synaptosomes, microsomes and mitochondria were separated by density gradient differential centrifugation and assayed for antioxidant system. A significant and dose-dependent-decrease in superoxide dismutase (SOD) activity was observed in all brain subcellular fractions. Catalase (CAT) activity was significantly decreased in brain mitochondria (67% and 80% of control) at higher doses of ethanol; whereas, CAT activity was significantly increased in cytosol, synaptosomes and microsomes. Glutathione peroxidase (GSH-Px) activity was significantly increased in all brain subcellular fractions except in cytosol at higher dose of ethanol. Malondialdehyde (MDA) content was significantly increased in all brain subcellular fractions showing dose response of ethanol-induced oxidative stress. The increase in MDA levels in the brain synaptosomes and microsomes were higher at 6 g dose of ethanol (155% and 163% of control) when compared to mitochondria and cytosol. Glutathione (GSH) levels were significantly increased in brain cytosol and microsomes at higher dose of ethanol (164% and 159% of control); whereas, the GSH concentration was significantly decreased in brain synaptosomes and mitochondria. The antioxidant enzyme (AOE) activity ratios (GSH-Px/SOD and GSH-Px + CAT/SOD) were dose dependently increased in all brain subcellular fractions, particularly in synaptosomes. The GSH/GSSG ratio was dose dependently increased in brain microsomes. The perturbations in the antioxidant defense system and enhanced lipid peroxidation following graded doses of ethanol ingestion indicate a dose-dependent-oxidative 2133stress response in brain subcellular compartments of rats.


Subject(s)
Brain/drug effects , Ethanol/toxicity , Glutathione/metabolism , Lipid Peroxidation/drug effects , Malondialdehyde/metabolism , Animals , Brain/enzymology , Brain/ultrastructure , Catalase/metabolism , Cytosol/enzymology , Dose-Response Relationship, Drug , Glutathione Peroxidase/metabolism , Male , Microsomes/enzymology , Mitochondria/enzymology , Random Allocation , Rats , Rats, Inbred F344 , Superoxide Dismutase/metabolism , Synaptosomes/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...