Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Toxicol Sci ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796678

ABSTRACT

Addressing human anatomical and physiological variability is a crucial component of human health risk assessment of chemicals. Experts have recommended probabilistic chemical risk assessment paradigms in which distributional adjustment factors are used to account for various sources of uncertainty and variability, including variability in the pharmacokinetic behavior of a given substance in different humans. In practice, convenient assumptions about the distribution forms of adjustment factors and human equivalent doses (HEDs) are often used. Parameters such as tissue volumes and blood flows are likewise often assumed to be lognormally or normally distributed without evaluating empirical data for consistency with these forms. In this work, we performed dosimetric extrapolations using physiologically based pharmacokinetic (PBPK) models for dichloromethane (DCM) and chloroform that incorporate uncertainty and variability to determine if the HEDs associated with such extrapolations are approximately lognormal and how they depend on the underlying distribution shapes chosen to represent model parameters. We accounted for uncertainty and variability in PBPK model parameters by randomly drawing their values from a variety of distribution types. We then performed reverse dosimetry to calculate HEDs based on animal points of departure (PODs) for each set of sampled parameters. Corresponding samples of HEDs were tested to determine the impact of input parameter distributions on their central tendencies, extreme percentiles, and degree of conformance to lognormality. This work demonstrates that the measurable attributes of human variability should be considered more carefully and that generalized assumptions about parameter distribution shapes may lead to inaccurate estimates of extreme percentiles of HEDs.

2.
Regul Toxicol Pharmacol ; 76: 102-12, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26776754

ABSTRACT

The developmental effects of NMP are well studied in Sprague-Dawley rats following oral, inhalation, and dermal routes of exposure. Short-term and chronic occupational exposure limit (OEL) values were derived using an updated physiologically based pharmacokinetic (PBPK) model for NMP, along with benchmark dose modeling. Two suitable developmental endpoints were evaluated for human health risk assessment: (1) for acute exposures, the increased incidence of skeletal malformations, an effect noted only at oral doses that were toxic to the dam and fetus; and (2) for repeated exposures to NMP, changes in fetal/pup body weight. Where possible, data from multiple studies were pooled to increase the predictive power of the dose-response data sets. For the purposes of internal dose estimation, the window of susceptibility was estimated for each endpoint, and was used in the dose-response modeling. A point of departure value of 390 mg/L (in terms of peak NMP in blood) was calculated for skeletal malformations based on pooled data from oral and inhalation studies. Acceptable dose-response model fits were not obtained using the pooled data for fetal/pup body weight changes. These data sets were also assessed individually, from which the geometric mean value obtained from the inhalation studies (470 mg*hr/L), was used to derive the chronic OEL. A PBPK model for NMP in humans was used to calculate human equivalent concentrations corresponding to the internal dose point of departure values. Application of a net uncertainty factor of 20-21, which incorporates data-derived extrapolation factors, to the point of departure values yields short-term and chronic occupational exposure limit values of 86 and 24 ppm, respectively.


Subject(s)
Benchmarking/standards , Models, Biological , Occupational Health/standards , Pyrrolidinones/pharmacokinetics , Pyrrolidinones/toxicity , Solvents/pharmacokinetics , Solvents/toxicity , Toxicity Tests/methods , Abnormalities, Drug-Induced/etiology , Animals , Animals, Newborn , Birth Weight/drug effects , Bone and Bones/abnormalities , Bone and Bones/drug effects , Dose-Response Relationship, Drug , Female , Fetal Weight/drug effects , Humans , Inhalation Exposure/adverse effects , Occupational Exposure/adverse effects , Pregnancy , Pyrrolidinones/blood , Rats, Sprague-Dawley , Risk Assessment , Species Specificity
3.
Toxicol Appl Pharmacol ; 287(3): 293-8, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26123277

ABSTRACT

Hexavalent chromium (Cr6) is a drinking water contaminant that has been detected in most of the water systems throughout the United States. In 2-year drinking water bioassays, the National Toxicology Program (NTP) found clear evidence of carcinogenic activity in male and female rats and mice. Because reduction of Cr6 to trivalent chromium (Cr3) is an important detoxifying step in the gastrointestinal (GI) tract prior to systemic absorption, models have been developed to estimate the extent of reduction in humans and animals. The objective of this work was to use a revised model of ex vivo Cr6 reduction kinetics in gastric juice to analyze the potential reduction kinetics under in vivo conditions for mice, rats and humans. A published physiologically-based pharmacokinetic (PBPK) model was adapted to incorporate the new reduction model. This paper focuses on the toxicokinetics of Cr6 in the stomach compartment, where most of the extracellular Cr6 reduction is believed to occur in humans. Within the range of doses administered by the NTP bioassays, neither the original nor revised models predict saturation of stomach reducing capacity to occur in vivo if applying default parameters. However, both models still indicate that mice exhibit the lowest extent of reduction in the stomach, meaning that a higher percentage of the Cr6 dose may escape stomach reduction in that species. Similarly, both models predict that humans exhibit the highest extent of reduction at low doses.


Subject(s)
Chromium/pharmacokinetics , Gastric Mucosa/metabolism , Models, Biological , Water Pollutants, Chemical/pharmacokinetics , Administration, Oral , Animals , Chromium/toxicity , Computer Simulation , Dose-Response Relationship, Drug , Gastric Absorption , Gastric Juice/metabolism , Humans , Hydrogen-Ion Concentration , Mice , Oxidation-Reduction , Rats , Risk Assessment , Species Specificity , Water Pollutants, Chemical/toxicity
4.
Toxicol Sci ; 126(1): 5-15, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22045031

ABSTRACT

A panel of experts in physiologically based pharmacokinetic (PBPK) modeling and relevant quantitative methods was convened to describe and discuss model evaluation criteria, issues, and choices that arise in model application and computational tools for improving model quality for use in human health risk assessments (HHRAs). Although publication of a PBPK model in a peer-reviewed journal is a mark of good science, subsequent evaluation of published models and the supporting computer code is necessary for their consideration for use in HHRAs. Standardized model evaluation criteria and a thorough and efficient review process can reduce the number of review and revision iterations and hence the time needed to prepare a model for application. Efficient and consistent review also allows for rapid identification of needed model modifications to address HHRA-specific issues. This manuscript reports on the workshop where a process and criteria that were created for PBPK model review were discussed along with other issues related to model review and application in HHRA. Other issues include (1) model code availability, portability, and validity; (2) probabilistic (e.g., population-based) PBPK models and critical choices in parameter values to fully characterize population variability; and (3) approaches to integrating PBPK model outputs with other HHRA tools, including benchmark dose modeling. Two specific case study examples are provided to illustrate challenges that were encountered during the review and application process. By considering the frequent challenges encountered in the review and application of PBPK models during the model development phase, scientists may be better able to prepare their models for use in HHRAs.


Subject(s)
Models, Biological , Periodicals as Topic , Pharmacokinetics , Risk Assessment/methods , Animals , Humans , Monte Carlo Method , Pharmacology, Clinical/methods , Toxicology/methods
5.
Toxicol Sci ; 64(1): 100-10, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11606806

ABSTRACT

Formaldehyde-induced nasal squamous cell carcinomas in rats and squamous metaplasia in rats and rhesus monkeys occur in specific regions of the nose with species-specific distribution patterns. Experimental approaches addressing local differences in formaldehyde uptake patterns and dose are limited by the resolution of dissection techniques used to obtain tissue samples and the rapid metabolism of absorbed formaldehyde in the nasal mucosa. Anatomically accurate, 3-dimensional computational fluid dynamics models of F344 rat, rhesus monkey, and human nasal passages were used to estimate and compare regional inhaled formaldehyde uptake patterns predicted among these species. Maximum flux values, averaged over a breath, in nonsquamous epithelium were estimated to be 2620, 4492, and 2082 pmol/(mm(2)-h-ppm) in the rat, monkey, and human respectively. Flux values predicted in sites where cell proliferation rates were measured as similar in rats and monkeys were also similar, as were fluxes predicted in a region of high tumor incidence in the rat nose and the anterior portion of the human nose. Regional formaldehyde flux estimates are directly applicable to clonal growth modeling of formaldehyde carcinogenesis to help reduce uncertainty in human cancer risk estimates.


Subject(s)
Formaldehyde/administration & dosage , Formaldehyde/pharmacokinetics , Models, Anatomic , Nasal Cavity/anatomy & histology , Nasal Mucosa/metabolism , Animals , Carcinogens/administration & dosage , Carcinogens/pharmacokinetics , Computer Simulation , Humans , Inhalation Exposure , Macaca mulatta , Nasal Mucosa/drug effects , Pulmonary Ventilation , Rats , Rats, Inbred F344
6.
Toxicol Sci ; 64(1): 111-21, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11606807

ABSTRACT

Interspecies extrapolations of tissue dose and tumor response have been a significant source of uncertainty in formaldehyde cancer risk assessment. The ability to account for species-specific variation of dose within the nasal passages would reduce this uncertainty. Three-dimensional, anatomically realistic, computational fluid dynamics (CFD) models of nasal airflow and formaldehyde gas transport in the F344 rat, rhesus monkey, and human were used to predict local patterns of wall mass flux (pmol/[mm(2)-h-ppm]). The nasal surface of each species was partitioned by flux into smaller regions (flux bins), each characterized by surface area and an average flux value. Rat and monkey flux bins were predicted for steady-state inspiratory airflow rates corresponding to the estimated minute volume for each species. Human flux bins were predicted for steady-state inspiratory airflow at 7.4, 15, 18, 25.8, 31.8, and 37 l/min and were extrapolated to 46 and 50 l/min. Flux values higher than half the maximum flux value (flux median) were predicted for nearly 20% of human nasal surfaces at 15 l/min, whereas only 5% of rat and less than 1% of monkey nasal surfaces were associated with fluxes higher than flux medians at 0.576 l/min and 4.8 l/min, respectively. Human nasal flux patterns shifted distally and uptake percentage decreased as inspiratory flow rate increased. Flux binning captures anatomical effects on flux and is thereby a basis for describing the effects of anatomy and airflow on local tissue disposition and distributions of tissue response. Formaldehyde risk models that incorporate flux binning derived from anatomically realistic CFD models will have significantly reduced uncertainty compared with risk estimates based on default methods.


Subject(s)
Formaldehyde/administration & dosage , Formaldehyde/pharmacokinetics , Models, Anatomic , Nasal Cavity/anatomy & histology , Nasal Mucosa/metabolism , Animals , Carcinogens/administration & dosage , Carcinogens/pharmacokinetics , Computer Simulation , Humans , Macaca mulatta , Nasal Cavity/metabolism , Pulmonary Ventilation , Rats , Rats, Inbred F344 , Risk Assessment , Species Specificity
7.
Crit Rev Toxicol ; 31(3): 285-311, 2001 May.
Article in English | MEDLINE | ID: mdl-11405442

ABSTRACT

Benzene is a ubiquitous, highly flammable, colorless liquid that is a known hematotoxin, myelotoxin, and human leukemogen. Benzene-induced toxicity in animals is clearly mediated by its metabolism. The mechanisms of acute hemato- and myelotoxicity in humans are almost certainly the same as in animals, and there is compelling evidence that metabolism is requisite for the induction of leukemia in humans. A very large number of experimental investigations of benzene metabolism have been conducted with animals, both in vivo and in vitro. There have also been many investigations of benzene metabolism in humans and with human tissues, Although the blood or tissue concentrations of benzene metabolites in humans resulting from benzene exposure have never been measured. Further, a number of mathematical models of benzene metabolism and dosimetry have been developed. In this article, we consider results from both experimental and mathematical modeling research, with particular emphasis on the last decade, and discuss the factors that are likely to be most influential in the metabolism of benzene.


Subject(s)
Benzene/metabolism , Animals , Benzene/administration & dosage , Benzene/pharmacokinetics , Enzyme Induction/drug effects , Female , Humans , In Vitro Techniques , Male , Microsomes/metabolism , Models, Theoretical
8.
Environ Toxicol Pharmacol ; 9(4): 153-160, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11292578

ABSTRACT

Our objective was to construct a physiologically-based pharmacokinetic (PBPK) model describing the kinetic behavior of 2,4-dichlorophenoxyacetic acid (2,4-D) on rats after long-term exposures to low doses. Our study demonstrated the model's ability to simulate uptake of 2,4-D in discrete areas of the rat brain. The model was derived from the generic PBPK model that was first developed for high-dose, single exposures of 2,4-D to rats or rabbits (Kim, C.S., Gargas, M.L., Andersen, M.E., 1994. Pharmacokinetic modeling of 2,4-dichlorophenoxyacetic acid (2,4-D) in rats and rabbits brain following single dose administration. Toxicol. Lett. 74, 189-201; Kim, C.S., Slikker, W., Jr., Binienda, Z., Gargas, M.L., Andersen, M.E., 1995. Development of a physiologically based pharmacokinetic (PBPK) model for 2,4-dichlorophenoxyacetic acid (2,4-D) dosimetry in discrete areas of the brain following a single intraperitoneal or intravenous dose. Neurotox. Teratol. 17, 111-120.), to which a subcutaneous (hypodermal) compartment was incorporated for low-dose, long-term infusion. It consisted of two body compartments, along with compartments for venous and arterial blood, cerebrospinal fluid, brain plasma and six brain regions. Uptake of the toxin was membrane-limited by the blood-brain barrier with clearance from the brain provided by cerebrospinal fluid 'sink' mechanisms. This model predicted profiles of 2,4-D levels in brain and blood over a 28-day period that compared well with concentrations measured in vivo with rats that had been given 2,4-D (1 or 10 mg/kg per day) with [14C]-2,4-D subcutaneously (s.c.) for 7, 14, or 28 days, respectively. This PBPK model should be an effective tool for evaluating the target tissue doses that may produce the neurotoxicity of organic acid toxicants after low-dose, long-term exposures to contaminated foods or the environment.

9.
J Toxicol Environ Health A ; 62(6): 439-65, 2001 Mar 23.
Article in English | MEDLINE | ID: mdl-11289318

ABSTRACT

Benzene (C6H6) is a highly flammable, colorless liquid. Ubiquitous exposures result from its presence in gasoline vapors, cigarette smoke, and industrial processes. Benzene increases the incidence of leukemia in humans when they are exposed to high doses for extended periods; however, leukemia risks in humans at low exposures are uncertain. The exposure-dose-response relationship of benzene in humans is expected to be nonlinear because benzene undergoes a series of metabolic transformations, detoxifying and activating, in the liver, resulting in multiple metabolites that exert toxic effects on the bone marrow. We developed a physiologically based pharmacokinetic model for the uptake and elimination of benzene in mice to relate the concentration of inhaled and orally administered benzene to the tissue doses of benzene and its key metabolites, benzene oxide, phe nol, and hydroquinone. As many parameter values as possible were taken from the literature; in particular, metabolic parameters obtained from in vitro studies with mouse liver were used since comparable parameters are also available for humans. Parameters estimated by fitting the model to published data were first-order rate constants for pathways lacking in vitro data and the concentrations of microsomal and cytosolic protein, which effectively alter overall enzyme activity. The model was constrained by using the in vitro metabolic parameters (maximum velocities, first-order rate constants, and saturation parameters), and data from multiple laboratories and experiments were used. Despite these constraints and sources of variability, the model simulations matched the data reasonably well in most cases, showing that in vitro metabolic constants can be successfully extrapolated to predict in vivo data for benzene metabolism and dosimetry. Therefore in vitro metabolic constants for humans can subsequently be extrapolated to predict the dosimetry of benzene and its metabolites in humans. This will allow us to better estimate the risks of adverse effects from low-level benzene exposures.


Subject(s)
Benzene/metabolism , Benzene/pharmacokinetics , Administration, Inhalation , Algorithms , Animals , Benzene/chemistry , Benzene Derivatives/chemistry , Benzene Derivatives/metabolism , Benzene Derivatives/pharmacokinetics , Chemical Phenomena , Chemistry, Physical , Mice , Models, Biological , Risk Assessment
11.
Environ Health Perspect ; 108 Suppl 5: 873-81, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11035997

ABSTRACT

Increasing concerns that environmental contaminants may disrupt the endocrine system require development of mathematical tools to predict the potential for such compounds to significantly alter human endocrine function. The endocrine system is largely self-regulating, compensating for moderate changes in dietary phytoestrogens (e.g., in soy products) and normal variations in physiology. However, severe changes in dietary or oral exposures or in health status (e.g., anorexia), can completely disrupt the menstrual cycle in women. Thus, risk assessment tools should account for normal regulation and its limits. We present a mathematical model for the synthesis and release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in women as a function of estrogen, progesterone, and inhibin blood levels. The model reproduces the time courses of LH and FSH during the menstrual cycle and correctly predicts observed effects of administered estrogen and progesterone on LH and FSH during clinical studies. The model should be useful for predicting effects of hormonally active substances, both in the pharmaceutical sciences and in toxicology and risk assessment.


Subject(s)
Follicle Stimulating Hormone/physiology , Gonadotropins/physiology , Homeostasis/physiology , Luteinizing Hormone/physiology , Menstrual Cycle/physiology , Models, Biological , Adult , Dose-Response Relationship, Drug , Environmental Exposure/analysis , Environmental Monitoring/methods , Estrogens/physiology , Female , Humans , Inhibins/physiology , Predictive Value of Tests , Progesterone/physiology , Risk Assessment/methods , Time Factors , Toxicology
12.
Toxicology ; 149(1): 21-34, 2000 Aug 14.
Article in English | MEDLINE | ID: mdl-10963858

ABSTRACT

The concept that the product of the concentration (C) of a substance and the length of time (t) it is administered produces a fixed level of effect for a given endpoint has been ascribed to Fritz Haber, who was a German scientist in the early 1900s. He contended that the acute lethality of war gases could be assessed by the amount of the gas in a cubic meter of air (i.e. the concentration) multiplied by the time in min that the animal had to breathe the air before death ensued (i.e. C x t=k). While Haber recognized that C x t=k was applicable only under certain conditions, many toxicologists have used his rule to analyze experimental data whether or not their chemicals, biological endpoints, and exposure scenarios were suitable candidates for the rule. The fact that the relationship between C and t is linear on a log-log scale and could easily be solved by hand, led to early acceptance among toxicologists, particularly in the field of entomology. In 1940, a statistician named Bliss provided an elegant treatment on the relationships among exposure time, concentration, and the toxicity of insecticides. He proposed solutions for when the log-log plot of C and t was composed of two or more rectilinear segments, for when the log-log plot was curvilinear, and for when the slope of the dosage-mortality curve was a function of C. Despite the fact that Haber's rule can underestimate or overestimate effects (and consequently risks), it has been used in various settings by regulatory bodies. Examples are presented from the literature of data sets that follow Haber's rule as well as those that do not. Haber's rule is put into perspective by showing that it is simply a special case in a family of power law curves relating concentration and duration of exposure to a fixed level of response for a given endpoint. Also shown is how this power law family can be used to examine the three-dimensional surface relating C, t, and varying levels of response. The time has come to move beyond the limited view of C and t relationships inferred by Haber's rule to the use of the broader family of curves of which this rule is a special case.


Subject(s)
Environmental Exposure , Models, Biological , Toxicology/methods , Animals , Dose-Response Relationship, Drug , Humans , Nitrogen Dioxide/toxicity , Risk Assessment , Time Factors
13.
Toxicol Sci ; 55(2): 266-73, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10828257

ABSTRACT

1,3-Butadiene (BD), a rodent carcinogen, is metabolized to mutagenic and DNA-reactive epoxides. In vitro data suggest that this oxidation is mediated by cytochrome P450 2E1 (CYP2E1). In this study, we tested the hypothesis that oxidation of BD by CYP2E1 is required for genotoxicity to occur. Inhalation exposures were conducted with B6C3F1 mice using a closed-chamber technique, and the maximum rate of butadiene oxidation was estimated. The total amount of butadiene metabolized was then correlated with the frequency of micronuclei (MN). Three treatment groups were used: (1) mice with no pretreatment; (2) mice pretreated with 1,2-trans-dichloroethylene (DCE), a specific CYP2E1 inhibitor; and (3) mice pretreated with 1-aminobenzotriazole (ABT), an irreversible inhibitor of cytochromes P450. Mice in all 3 groups were exposed to an initial BD concentration of 1100 ppm, and the decline in concentration of BD in the inhalation chamber with time, due to uptake and metabolism of BD, was monitored using gas chromatography. A physiologically based pharmacokinetic model was used to analyze the gas uptake data, estimate V(max) for BD oxidation, and compute the total amount of BD metabolized. Model simulations of the gas uptake data predicted the maximum rate of BD oxidation would be reduced by 60% and 100% for the DCE- and ABT-pretreated groups, respectively. Bone marrow was harvested 24 h after the onset of the inhalation exposure and analyzed for frequency of micronuclei in polychromatic erythrocytes (MN-PCE). The frequency of MN-PCE per 1000 PCE in mice exposed to BD was 28.2 +/- 3.1, 19.8 +/- 2.5, and 12.3 +/- 1.9, for the mice with no pretreatment, DCE-pretreated mice and ABT-pretreated mice, respectively. Although inhibition of CYP2E1 decreased BD-mediated genotoxicity, it did not completely eliminate genotoxic effects. These data suggest that other P450 isoforms may contribute significantly to the metabolic activation of BD and resultant genotoxicity.


Subject(s)
Bone Marrow Cells/metabolism , Butadienes/pharmacokinetics , Cytochrome P-450 CYP2E1 Inhibitors , Enzyme Inhibitors/pharmacology , Micronuclei, Chromosome-Defective/metabolism , Mutagens/pharmacokinetics , Administration, Inhalation , Animals , Bone Marrow Cells/drug effects , Butadienes/toxicity , Cytochrome P-450 CYP2E1/metabolism , Dichloroethylenes/pharmacology , Erythrocytes/drug effects , Erythrocytes/metabolism , Male , Mice , Mice, Inbred Strains , Micronuclei, Chromosome-Defective/drug effects , Micronucleus Tests , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Models, Biological , Mutagenicity Tests , Mutagens/toxicity , Triazoles/pharmacology
14.
Inhal Toxicol ; 11(10): 967-80, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10509029

ABSTRACT

The mucociliary apparatus is an important respiratory-tract defense system that may provide significant protection of the underlying epithelium from gases and vapors. Limiting-case calculations were performed to determine the significance of convective mucus transport and chemical reaction for formaldehyde (HCHO) and ozone (O(3)) in rat nasal respiratory epithelial mucus. Less than 4.6% of absorbed HCHO can be bound to amino groups (serum albumin) after 20 min of exposure. Thus, at the slowest measured mucus flow rates in rats, approximately 1 mm/min, a fluid element of mucus could travel more than 2 cm before binding 5% of absorbed HCHO, by which time the element would probably leave the nose (the site of toxic responses). In other calculations, HCHO removed by chemical reaction from a volume of mucus exposed for longer times was determined to be less than 0.54% of that removed by mucus flow (convection). Given the solubility of HCHO in mucus (water) and estimates of total mucus flow, however, as much as 22-42% of inhaled HCHO may be removed by total mucus flow. Alternately, O(3) dissolved in mucus would react completely with unsaturated fatty acids in 8.3 x 10(-4) s, in which time the mucus could flow no more than approximately 0.42 microm at the maximum reported flow rate of 30 mm/min. Even if a volume of mucus is flushed by net flow in 1 s, the amount of O(3) removed by flow would only be 0.12% of that removed by chemical reaction. Finally, based on the solubility of ozone, less than 8.0 x 10(-5)% of inhaled material could be removed from the nose by mucus flow. These results indicate which mucociliary processes are significant in site-specific dosimetry modeling.


Subject(s)
Convection , Formaldehyde/chemistry , Formaldehyde/pharmacokinetics , Mucus/metabolism , Oxidants, Photochemical/chemistry , Oxidants, Photochemical/pharmacokinetics , Ozone/chemistry , Ozone/pharmacokinetics , Algorithms , Animals , Lung/metabolism , Mucus/chemistry , Nasal Cavity/metabolism , Oxidation-Reduction , Rats
16.
Carcinogenesis ; 20(8): 1511-20, 1999 Aug.
Article in English | MEDLINE | ID: mdl-10426800

ABSTRACT

Benzene, a ubiquitous environmental pollutant, is known to cause leukemia and aplastic anemia in humans and hematotoxicity and myelotoxicity in rodents. Toxicity is thought to be exerted through oxidative metabolites formed in the liver, primarily via pathways mediated by cytochrome P450 2E1 (CYP2E1). Phenol, hydroquinone and trans-trans-muconaldehyde have all been hypothesized to be involved in benzene-induced toxicity. Recent reports indicate that benzene oxide is produced in vitro and in vivo and may be sufficiently stable to reach the bone marrow. Our goal was to improve existing mathematical models of microsomal benzene metabolism by including time course data for benzene oxide, by obtaining better parameter estimates and by determining if enzymes other than CYP2E1 are involved. Microsomes from male B6C3F1 mice and F344 rats were incubated with [(14)C]benzene (14 microM), [(14)C]phenol (303 microM) and [(14)C]hydroquinone (8 microM). Benzene and phenol were also incubated with mouse microsomes in the presence of trans-dichloroethylene, a CYP2E1 inhibitor, and benzene was incubated with trichloropropene oxide, an epoxide hydrolase inhibitor. These experiments did not indicate significant contributions of enzymes other than CYP2E1. Mathematical model parameters were fitted to rodent data and the model was validated by predicting human data. Model simulations predicted the qualitative behavior of three human time course data sets and explained up to 81% of the total variation in data from incubations of benzene for 16 min with microsomes from nine human individuals. While model predictions did deviate systematically from the data for benzene oxide and trihydroxybenzene, overall model performance in predicting the human data was good. The model should be useful in quantifying human risk due to benzene exposure and explicitly accounts for interindividual variation in CYP2E1 activity.


Subject(s)
Benzene/metabolism , Carcinogens/metabolism , Cytochrome P-450 CYP2E1/metabolism , Microsomes, Liver/metabolism , Models, Biological , Animals , Cytochrome P-450 CYP2E1 Inhibitors , Enzyme Inhibitors/pharmacology , Humans , Male , Mice , Microsomes, Liver/drug effects , Quaternary Ammonium Compounds/pharmacology , Rats , Rats, Inbred F344 , Trichloroepoxypropane/pharmacology
17.
Carcinogenesis ; 18(9): 1695-700, 1997 Sep.
Article in English | MEDLINE | ID: mdl-9328163

ABSTRACT

Benzene is a ubiquitous environmental pollutant that is known to cause hematotoxicity and leukemia in humans. The initial oxidative metabolite of benzene has long been suspected to be benzene oxide (3,5-cyclohexadiene-1,2-oxide). During in vitro experiments designed to characterize the oxidative metabolism of [14C]benzene, a metabolite was detected by HPLC-radioactivity analysis that did not elute with other known oxidative metabolites. The purpose of our investigation was to prove the hypothesis that this metabolite was benzene oxide. Benzene (1 mM) was incubated with liver microsomes from human donors, male B6C3F1 mice, or male Fischer-344 rats, NADH (1 mM), and NADPH (1 mM) in 0.1 M sodium phosphate buffer (pH 7.4) and then extracted with methylene chloride. Gas chromatography-mass spectrometry analysis of incubation extracts for mice, rats, and humans detected a metabolite whose elution time and mass spectrum matched that of synthetic benzene oxide. The elution time of the benzene oxide peak was approximately 4.1 min, while phenol eluted at approximately 8 min. Benzene oxide also coeluted with the HPLC peak of the previously unidentified metabolite. Based on the 14C activity of this peak, the concentration of benzene oxide was determined to be approximately 18 microM, or 7% of total benzene metabolites, after 18 min of incubation of mouse microsomes with 1 mM benzene. The metabolite was not observed in incubations using heat-inactivated microsomes. This is the first demonstration that benzene oxide is a product of hepatic benzene metabolism in vitro. The level of benzene oxide detected suggests that benzene oxide is sufficiently stable to reach significant levels in the blood of mice, rats, and humans and may be translocated to the bone marrow. Therefore benzene oxide should not be excluded as a possible metabolite involved in benzene-induced leukemogenesis.


Subject(s)
Benzene/metabolism , Cyclohexanes/metabolism , Microsomes, Liver/metabolism , Animals , Chromatography, High Pressure Liquid , Gas Chromatography-Mass Spectrometry , Humans , Male , Mice , Rats , Rats, Inbred F344 , Species Specificity
18.
Carcinogenesis ; 18(4): 611-25, 1997 Apr.
Article in English | MEDLINE | ID: mdl-9111190

ABSTRACT

1,3-Butadiene (BD) is a more potent tumor inducer in mice than in rats. BD also shows striking differences in metabolic activation, with substantially higher blood concentrations of 1,2:3,4-diepoxybutane (butadiene diepoxide; BDE) in BD-exposed mice than in similarly exposed rats. The objective of this study was to develop a single mechanistic model structure capable of describing BD disposition in both species. To achieve this objective, known pathways of 1,2-epoxy-3-butene (butadiene monoepoxide; BMO) and BDE metabolism were incorporated into a physiologically based pharmacokinetic model by scaling rates determined in vitro. With this model structure, epoxide clearance was underestimated for both rats and mice. Improved simulation of blood epoxide concentrations was achieved by addition of first-order metabolism in the slowly perfused tissues, verified by simulation of data on the time course for BMO elimination after i.v. injection of BMO. Blood concentrations of BD were accurately predicted for mice and rats exposed by inhalation to constant concentrations of BD. However, if all BD was assumed to be metabolized to BMO, blood concentrations of BMO were overpredicted. By assuming that only a fraction of BD metabolism produces BMO, blood concentrations of BMO could be predicted over a range of BD exposure concentrations for both species. In vitro and in vivo studies suggest an alternative cytochrome P-450-mediated pathway for BD metabolism that does not yield BMO. Including an alternative pathway for BD metabolism in the model also gave accurate predictions of blood BDE concentrations after inhalation of BD. Blood concentrations of BMO and BDE observed in both mice and rats are best explained by the existence of an alternative pathway for BD metabolism which does not produce BMO.


Subject(s)
Butadienes/pharmacokinetics , Epoxy Compounds/pharmacokinetics , Administration, Inhalation , Animals , Butadienes/blood , Butadienes/toxicity , Epoxy Compounds/blood , Epoxy Compounds/toxicity , Injections, Intravenous , Mice , Models, Biological , Rats , Species Specificity
19.
Toxicol Appl Pharmacol ; 143(1): 47-55, 1997 Mar.
Article in English | MEDLINE | ID: mdl-9073591

ABSTRACT

Kimbell and coworkers (Toxicol, Appl. Pharmacol, 121, 253-263, 1993) developed a computational fluid dynamics (CFD) model of a F344 rat nasal passage to quantify local wall mass flux (uptake rate) of inhaled chemical. To simulate formaldehyde uptake, Kimbell et al. assumed that mass transfer of formaldehyde from the air into the nasal lining was fast and complete. This was approximated in the CFD model by setting the formaldehyde concentration at the airway walls to zero. Experimental confirmation of formaldehyde mass-flux predictions is desirable if the CFD model is to be used for predicting formaldehyde dosimetry. The purpose of this study was to see if the CFD model predictions of formaldehyde mass flux are consistent with laboratory data on formaldehyde dosimetry. In this study, a mathematical model of the nasal lining was modified to link CFD dosimetry predictions for inhaled formaldehyde with measured tissue disposition of inhaled gas. This model treats the nasal lining as a single, well-stirred compartment, accounts for formaldehyde reaction via saturable and first-order pathways, and allows comparison of model-predicted DNA-protein cross-links (DPX) with regional DPX measured in formaldehyde-exposed rats. Effective Michaelis-Menten kinetic parameters (Vmax = 3040 microM/min and Km = 59 microM) and a pseudo-first-order rate constant for elimination of formaldehyde by nonsaturable pathways (kf = 6 min-1) were estimated (fit) using an average mass flux derived from experimentally measured uptake of formaldehyde. DPX predictions obtained using the estimated kinetic parameters and linking the CFD model to the nasal-lining model compared well with experimentally measured DPX. The close correlation between predicted and measured DPX in the rat nasal passage supports the CFD model predictions of formaldehyde mass flux at the level of resolution provided by the experimental data.


Subject(s)
DNA Adducts/analysis , Formaldehyde/administration & dosage , Formaldehyde/pharmacokinetics , Models, Biological , Nasal Mucosa/metabolism , Administration, Inhalation , Animals , Cross-Linking Reagents , DNA-Binding Proteins , Rats , Rats, Inbred F344 , Reproducibility of Results , Sensitivity and Specificity
20.
Environ Health Perspect ; 104 Suppl 6: 1399-404, 1996 Dec.
Article in English | MEDLINE | ID: mdl-9118926

ABSTRACT

Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene in humans are well documented and include aplastic anemia, pancytopenia, and acute myelogenous leukemia. However, the risks of leukemia at low exposure concentrations have not been established. A combination of metabolites (hydroquinone and phenol, for example) may be necessary to duplicate the hematotoxic effect of benzene, perhaps due in part to the synergistic effect of phenol on myeloperoxidase-mediated oxidation of hydroquinone to the reactive metabolite benzoquinone. Because benzene and its hydroxylated metabolites (phenol, hydroquinone, and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. In vitro studies of the metabolic oxidation of benzene, phenol, and hydroquinone are consistent with the mechanism of competitive interaction among the metabolites. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes such as enzymatic oxidation and deactivation processes such as conjugation and excretion. Phenol, the primary benzene metabolite, can undergo both oxidation and conjugation. Thus the potential exists for competition among various enzymes for phenol. Zonal localization of phase I and phase II enzymes in various regions of the liver acinus also impacts this competition. Biologically based dosimetry models that incorporate the important determinants of benzene flux, including interactions with other chemicals, will enable prediction of target tissue doses of benzene and metabolites at low exposure concentrations relevant for humans.


Subject(s)
Benzene/metabolism , Benzene/toxicity , Models, Biological , Animals , Bone Marrow/drug effects , Cytochrome P-450 CYP2E1/metabolism , Humans , Liver/drug effects , Liver/metabolism , Mice , Phenols/metabolism , Phenols/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...