Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vascul Pharmacol ; 155: 107379, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38762131

ABSTRACT

Pulmonary hypertension (PH) is a progressive, severe and to date not curable disease of the pulmonary vasculature. Alterations of the insulin-like growth factor 1 (IGF-1) system are known to play a role in vascular pathologies and IGF-binding proteins (IGFBPs) are important regulators of the bioavailability and function of IGFs. In this study, we show that circulating plasma levels of IGFBP-1, IGFBP-2 and IGFBP-3 are increased in idiopathic pulmonary arterial hypertension (IPAH) patients compared to healthy individuals. These binding proteins inhibit the IGF-1 induced IGF-1 receptor (IGF1R) phosphorylation and exhibit diverging effects on the IGF-1 induced signaling pathways in human pulmonary arterial cells (i.e. healthy as well as IPAH-hPASMCs, and healthy hPAECs). Furthermore, IGFBPs are differentially expressed in an experimental mouse model of PH. In hypoxic mouse lungs, IGFBP-1 mRNA expression is decreased whereas the mRNA for IGFBP-2 is increased. In contrast to IGFBP-1, IGFBP-2 shows vaso-constrictive properties in the murine pulmonary vasculature. Our analyses show that IGFBP-1 and IGFBP-2 exhibit diverging effects on IGF-1 signaling and display a unique IGF1R-independent kinase activation pattern in human pulmonary arterial smooth muscle cells (hPASMCs), which represent a major contributor of PAH pathobiology. Furthermore, we could show that IGFBP-2, in contrast to IGFBP-1, induces epidermal growth factor receptor (EGFR) signaling, Stat-3 activation and expression of Stat-3 target genes. Based on our results, we conclude that the IGFBP family, especially IGFBP-1, IGFBP-2 and IGFBP-3, are deregulated in PAH, that they affect IGF signaling and thereby regulate the cellular phenotype in PH.


Subject(s)
Disease Models, Animal , Insulin-Like Growth Factor Binding Protein 1 , Insulin-Like Growth Factor Binding Protein 2 , Insulin-Like Growth Factor Binding Protein 3 , Insulin-Like Growth Factor I , Myocytes, Smooth Muscle , Pulmonary Artery , Receptor, IGF Type 1 , Signal Transduction , Humans , Animals , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/genetics , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Insulin-Like Growth Factor Binding Protein 3/metabolism , Insulin-Like Growth Factor Binding Protein 3/genetics , Insulin-Like Growth Factor Binding Protein 2/metabolism , Insulin-Like Growth Factor Binding Protein 2/genetics , Insulin-Like Growth Factor I/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Cells, Cultured , Male , Insulin-Like Growth Factor Binding Protein 1/metabolism , Insulin-Like Growth Factor Binding Protein 1/genetics , Phosphorylation , STAT3 Transcription Factor/metabolism , Case-Control Studies , Mice, Inbred C57BL , Familial Primary Pulmonary Hypertension/metabolism , Familial Primary Pulmonary Hypertension/physiopathology , Familial Primary Pulmonary Hypertension/pathology , Familial Primary Pulmonary Hypertension/genetics , Female , ErbB Receptors/metabolism , Middle Aged , Vascular Remodeling , Adult , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology
2.
Am J Respir Cell Mol Biol ; 64(1): 100-114, 2021 01.
Article in English | MEDLINE | ID: mdl-33052714

ABSTRACT

In pulmonary arterial hypertension (PAH), progressive structural remodeling accounts for the pulmonary vasculopathy including the obliteration of the lung vasculature that causes an increase in vascular resistance and mean blood pressure in the pulmonary arteries ultimately leading to right heart failure-mediated death. Deciphering the molecular details of aberrant signaling of pulmonary vascular cells in PAH is fundamental for the development of new therapeutic strategies. We aimed to identify kinases as new potential drug targets that are dysregulated in PAH by means of a peptide-based kinase activity assay. We performed a tyrosine kinase-dependent phosphorylation assay using 144 selected microarrayed substrate peptides. The differential signature of phosphopeptides was used to predict alterations in tyrosine kinase activities in human pulmonary arterial smooth muscle cells (HPASMCs) from patients with idiopathic PAH (IPAH) compared with healthy control cells. Thereby, we observed an overactivation and an increased expression of Jak2 (Janus kinase 2) in HPASMCs from patients with IPAH as compared with controls. In vitro, IL-6-induced proliferation and migration of HPASMCs from healthy individuals as well as from patients with IPAH were reduced in a dose-dependent manner by the U.S. Food and Drug Administration-approved Jak1 and Jak2 inhibitor ruxolitinib. In vivo, ruxolitinib therapy in two experimental models of pulmonary arterial hypertension dose-dependently attenuated the elevation in pulmonary arterial pressure, partially reduced right ventricular hypertrophy, and almost completely restored cardiac index without signs of adverse events on cardiac function. Therefore, we propose that ruxolitinib may present a novel therapeutic option for patients with PAH by reducing pulmonary vascular remodeling through effectively blocking Jak2-Stat3 (signal transducer of activators of transcription)-mediated signaling pathways.


Subject(s)
Hypertension, Pulmonary/metabolism , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Signal Transduction/physiology , Animals , Cells, Cultured , Humans , Hypertension, Pulmonary/drug therapy , Hypertrophy, Right Ventricular/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Nitriles , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Pyrazoles/pharmacology , Pyrimidines , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Vascular Remodeling/drug effects , Vascular Remodeling/physiology , Vascular Resistance/drug effects , Vascular Resistance/physiology
3.
Nat Commun ; 10(1): 2204, 2019 05 17.
Article in English | MEDLINE | ID: mdl-31101827

ABSTRACT

Pulmonary arterial hypertension (PAH) is a devastating disease with poor prognosis and limited therapeutic options. We screened for pathways that may be responsible for the abnormal phenotype of pulmonary arterial smooth muscle cells (PASMCs), a major contributor of PAH pathobiology, and identified cyclin-dependent kinases (CDKs) as overactivated kinases in specimens derived from patients with idiopathic PAH. This increased CDK activity is confirmed at the level of mRNA and protein expression in human and experimental PAH, respectively. Specific CDK inhibition by dinaciclib and palbociclib decreases PASMC proliferation via cell cycle arrest and interference with the downstream CDK-Rb (retinoblastoma protein)-E2F signaling pathway. In two experimental models of PAH (i.e., monocrotaline and Su5416/hypoxia treated rats) palbociclib reverses the elevated right ventricular systolic pressure, reduces right heart hypertrophy, restores the cardiac index, and reduces pulmonary vascular remodeling. These results demonstrate that inhibition of CDKs by palbociclib may be a therapeutic strategy in PAH.


Subject(s)
Cyclin-Dependent Kinases/antagonists & inhibitors , Familial Primary Pulmonary Hypertension/drug therapy , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Animals , Cell Line , Cyclin-Dependent Kinases/metabolism , Disease Models, Animal , Familial Primary Pulmonary Hypertension/chemically induced , Familial Primary Pulmonary Hypertension/pathology , Familial Primary Pulmonary Hypertension/surgery , Humans , Indoles/toxicity , Lung/blood supply , Lung/pathology , Lung/surgery , Male , Mice , Mice, Inbred C57BL , Monocrotaline/toxicity , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Piperazines/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Pulmonary Artery/cytology , Pulmonary Artery/drug effects , Pulmonary Artery/pathology , Pyridines/therapeutic use , Pyrroles/toxicity , Rats , Rats, Inbred WKY , Rats, Sprague-Dawley , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...