Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 635: 526-542, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29679825

ABSTRACT

Environmental policies in the European Union focus on the prevention of hazardous waste and aim to mitigate its impact on human health and ecosystems. However, progress is promoting a shift in perspective from environmental impacts to resource recovery. Municipal solid waste incineration (MSWI) has been increasing in developed countries, thus the amount of air pollution control residues (APCr) and fly ashes (FA) have followed the same upward trend. APCr from MSWI is classified as hazardous waste in the List of Waste (LoW) and as an absolute entry (19 01 07*), but FA may be classified as a mirror entry (19 0 13*/19 01 14). These properties arise mainly from their content in soluble salts, potentially toxic metals, trace organic pollutants and high pH in contact with water. Since these residues have been mostly disposed of in underground and landfills, other possibilities must be investigated to recover secondary raw materials and products. According to the literature, four additional routes of recovery have been found: detoxification (e.g. washing), product manufacturing (e.g. ceramic products and cement), practical applications (e.g. CO2 sequestration) and recovery of materials (e.g. Zn and salts). This work aims to identify the best available technologies for material recovery in order to avoid landfill solutions. Within this scope, six case studies are presented and discussed: recycling in lightweight aggregates, glass-ceramics, cement, recovery of zinc, rare metals and salts. Finally, future perspectives are provided to advance understanding of this anthropogenic waste as a source of resources, yet tied to safeguards for the environment.

2.
Waste Manag ; 76: 457-471, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29559296

ABSTRACT

Fly ash from municipal solid waste incineration contains a large potential for recyclable metals such as Zn, Pb, Cu and Cd. The Swiss Waste Ordinance prescribes the treatment of fly ash and recovery of metals to be implemented by 2021. More than 60% of the fly ash in Switzerland is acid leached according to the FLUWA process, which provides the basis for metal recovery. The investigation and optimization of the FLUWA process is of increasing interest and an industrial solution for direct metal recovery within Switzerland is in development. With this work, a detailed laboratory study on different filter cakes from fly ash leaching using HCl 5% (represents the FLUWA process) and concentrated sodium chloride solution (300 g/L) is described. This two-step leaching of fly ash is an efficient combination for the mobilization of a high percentage of heavy metals from fly ash (Pb, Cd ≥ 90% and Cu, Zn 70-80%). The depletion of these metals is mainly due to a combination of redox reaction and metal-chloride-complex formation. The results indicate a way forward for an improved metal depletion and recovery from fly ash that has potential for application at industrial scale.


Subject(s)
Coal Ash , Incineration , Metals, Heavy/chemistry , Carbon , Hydrochloric Acid/chemistry , Particulate Matter , Sodium Chloride/chemistry , Switzerland
3.
Waste Manag ; 75: 361-371, 2018 May.
Article in English | MEDLINE | ID: mdl-29478958

ABSTRACT

The elemental composition of fly ash from six waste-to-energy (WTE) plants in Germany and two WTE plants in Switzerland were analyzed. Samples were taken daily over a period of one month and mixed to a composite sample for each German plant. From two Swiss plants, two and three of these composite samples, respectively, were collected for different months in order to assess temporal differences between these months. In total, 61 elements, including rare earth elements, were analyzed using ICP-OES and ICP-MS. The analysis method was validated for 44 elements either by reference materials (BCR 176R and NIST 1633c) or analysis with both methods. Good recoveries, mostly ±10%, and high agreements between both methods were achieved. As long as no additives from flue gas cleaning were mixed with the fly ash, quite similar element contents were observed between all of the different incinerators. For most elements, the variations between the different months within the two Swiss plants were lower than differences between various plants. Especially main components show low variations between different months. To get a more detailed insight into temporal fluctuations within the mentioned Swiss plants, the concentrations of Zn, Pb, Cu, Cd, Sb, and Sn are presented over a period of three years (Jan. 2015 - Oct. 2017). The concentration profiles are based on weekly composite samples (consisting of daily taken samples) analyzed by the routine control of these plants using ED-XRF. The standard deviations of the average concentrations were around 20% over the three years for the regarded elements. The fluctuations were comparable at both plants. Due to the relatively low temporal concentration fluctuations observed within the plants, fly ash would be a continuous and constant source of secondary raw materials. Beside Zn, Pb, Cu, and Cd, which were already recovered on an industrial scale, Sb, Sn, and Bi also show a high potential as secondary raw material due to the high concentration of these elements in fly ash.


Subject(s)
Coal Ash , Incineration , Germany , Metals , Metals, Heavy/analysis , Switzerland
4.
Waste Manag ; 62: 147-159, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28007472

ABSTRACT

This study focusses on chemical and mineralogical characterization of fly ash and leached filter cake and on the determination of parameters influencing metal mobilization by leaching. Three different leaching processes of fly ash from municipal solid waste incineration (MSWI) plants in Switzerland comprise neutral, acidic and optimized acidic (+ oxidizing agent) fly ash leaching have been investigated. Fly ash is characterized by refractory particles (Al-foil, unburnt carbon, quartz, feldspar) and newly formed high-temperature phases (glass, gehlenite, wollastonite) surrounded by characteristic dust rims. Metals are carried along with the flue gas (Fe-oxides, brass) and are enriched in mineral aggregates (quartz, feldspar, wollastonite, glass) or vaporized and condensed as chlorides or sulphates. Parameters controlling the mobilization of neutral and acidic fly ash leaching are pH and redox conditions, liquid to solid ratio, extraction time and temperature. Almost no depletion for Zn, Pb, Cu and Cd is achieved by performing neutral leaching. Acidic fly ash leaching results in depletion factors of 40% for Zn, 53% for Cd, 8% for Pb and 6% for Cu. The extraction of Pb and Cu are mainly limited due to a cementation process and the formation of a PbCu0-alloy-phase and to a minor degree due to secondary precipitation (PbCl2). The addition of hydrogen peroxide during acidic fly ash leaching (optimized acidic leaching) prevents this reduction through oxidation of metallic components and thus significantly higher depletion factors for Pb (57%), Cu (30%) and Cd (92%) are achieved. The elevated metal depletion using acidic leaching in combination with hydrogen peroxide justifies the extra effort not only by reduced metal loads to the environment but also by reduced deposition costs.


Subject(s)
Incineration , Metals, Heavy/analysis , Solid Waste , Minerals/analysis , Switzerland
5.
Waste Manag Res ; 25(6): 547-55, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18229749

ABSTRACT

The method described below recovers zinc, a valuable metal that is present in high concentrations in filter ash from the thermal treatment of waste, and returns the filter ash stripped of heavy metals to the combustion process in order to destroy organic substances. On an industrial scale, the heavy metals in the filter ash were mobilized by means of hydrochloric acid in the acidic fluids produced in the flue-gas scrubbing process without the addition of further chemicals. A pilot plant for implementing the selective reactive extraction (SRE) method on the ash extracts, using a highly selective complexant, was operated over a period of several months in order to obtain a concentrated, high-purity zinc salt solution (mono metal solution). A zinc depletion rate of 99.8% in the aqueous extract was achieved using mixer-settler units. The residual zinc concentration in the waste water was then < 2 mg L(-1). By stripping the loaded organic phase, a concentrated, high-purity mono metal solution with 190 g L(-1) zinc was obtained. Zinc metal with a purity > 99.99% is then separated by means of electrolysis. To destroy organic substances present in the filter ash, particularly dioxins and furans, the extracted filter ash cake was returned to the combustion process together with household waste. Plant operation, raw and pure gas parameters, and quality of the bottom ash produced were not impacted by such recirculation. The profitability of the overall process is attributable both to the recovery of valuable zinc metal and to the cost savings made in waste water treatment and in the disposal of the waste combustion residues because the remaining mixture of filter ash and bottom ash can be reused in a combined form. This method therefore supports the sustainable and economically viable reuse of filter ash.


Subject(s)
Conservation of Natural Resources/methods , Filtration/methods , Industrial Waste/analysis , Temperature , Zinc/analysis , Zinc/isolation & purification , Electrolysis , Hydrogen-Ion Concentration , Switzerland , Waste Management , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...