Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953172

ABSTRACT

Zinc finger (ZnF) domains appear in a pool of structural contexts and despite their small size achieve varying target specificities, covering single-stranded and double-stranded DNA and RNA as well as proteins. Combined with other RNA-binding domains, ZnFs enhance affinity and specificity of RNA-binding proteins (RBPs). The ZnF-containing immunoregulatory RBP Roquin initiates mRNA decay, thereby controlling the adaptive immune system. Its unique ROQ domain shape-specifically recognizes stem-looped cis-elements in mRNA 3'-untranslated regions (UTR). The N-terminus of Roquin contains a RING domain for protein-protein interactions and a ZnF, which was suggested to play an essential role in RNA decay by Roquin. The ZnF domain boundaries, its RNA motif preference and its interplay with the ROQ domain have remained elusive, also driven by the lack of high-resolution data of the challenging protein. We provide the solution structure of the Roquin-1 ZnF and use an RBNS-NMR pipeline to show that the ZnF recognizes AU-rich RNAs. We systematically refine the contributions of adenines in a poly(U)-background to specific complex formation. With the simultaneous binding of ROQ and ZnF to a natural target transcript of Roquin, our study for the first time suggests how Roquin integrates RNA shape and sequence features through the ROQ-ZnF tandem.

2.
J Biol Chem ; 300(7): 107457, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38866324

ABSTRACT

AT-rich interacting domain (ARID)-containing proteins, Arids, are a heterogeneous DNA-binding protein family involved in transcription regulation and chromatin processing. For the member Arid5a, no exact DNA-binding preference has been experimentally defined so far. Additionally, the protein binds to mRNA motifs for transcript stabilization, supposedly through the DNA-binding ARID domain. To date, however, no unbiased RNA motif definition and clear dissection of nucleic acid-binding through the ARID domain have been undertaken. Using NMR-centered biochemistry, we here define the Arid5a DNA preference. Further, high-throughput in vitro binding reveals a consensus RNA-binding motif engaged by the core ARID domain. Finally, transcriptome-wide binding (iCLIP2) reveals that Arid5a has a weak preference for (A)U-rich regions in pre-mRNA transcripts of factors related to RNA processing. We find that the intrinsically disordered regions flanking the ARID domain modulate the specificity and affinity of DNA binding, while they appear crucial for RNA interactions. Ultimately, our data suggest that Arid5a uses its extended ARID domain for bifunctional gene regulation and that the involvement of IDR extensions is a more general feature of Arids in interacting with different nucleic acids at the chromatin-mRNA interface.

3.
Chembiochem ; 24(17): e202300110, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37466350

ABSTRACT

RNAs exhibit a plethora of functions far beyond transmitting genetic information. Often, RNA functions are entailed in their structure, be it as a regulatory switch, protein binding site, or providing catalytic activity. Structural information is a prerequisite for a full understanding of RNA-regulatory mechanisms. Owing to the inherent dynamics, size, and instability of RNA, its structure determination remains challenging. Methods such as NMR spectroscopy, X-ray crystallography, and cryo-electron microscopy can provide high-resolution structures; however, their limitations make structure determination, even for small RNAs, cumbersome, if at all possible. Although at a low resolution, small-angle X-ray scattering (SAXS) has proven valuable in advancing structure determination of RNAs as a complementary method, which is also applicable to large-sized RNAs. Here, we review the technological and methodological advancements of RNA SAXS. We provide examples of the powerful inclusion of SAXS in structural biology and discuss possible future applications to large RNAs.


Subject(s)
RNA , X-Ray Diffraction , RNA/chemistry , Scattering, Small Angle , X-Rays , Cryoelectron Microscopy , Crystallography, X-Ray
4.
Nat Commun ; 14(1): 3331, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37286558

ABSTRACT

The nucleocapsid protein (N) of SARS-CoV-2 plays a pivotal role during the viral life cycle. It is involved in RNA transcription and accounts for packaging of the large genome into virus particles. N manages the enigmatic balance of bulk RNA-coating versus precise RNA-binding to designated cis-regulatory elements. Numerous studies report the involvement of its disordered segments in non-selective RNA-recognition, but how N organizes the inevitable recognition of specific motifs remains unanswered. We here use NMR spectroscopy to systematically analyze the interactions of N's N-terminal RNA-binding domain (NTD) with individual cis RNA elements clustering in the SARS-CoV-2 regulatory 5'-genomic end. Supported by broad solution-based biophysical data, we unravel the NTD RNA-binding preferences in the natural genome context. We show that the domain's flexible regions read the intrinsic signature of preferred RNA elements for selective and stable complex formation within the large pool of available motifs.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , RNA, Viral/metabolism , Nucleocapsid/metabolism , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism
5.
Biomol NMR Assign ; 17(1): 121-127, 2023 06.
Article in English | MEDLINE | ID: mdl-37129704

ABSTRACT

The family of AT-rich interactive domain (ARID) containing proteins -Arids- contains 15 members that have almost exclusively been described as DNA-binding proteins. Interestingly, a decade ago the family member Arid5a was found to bind and stabilize mRNAs of immune system key players and thereby account for driving inflammatory and autoimmune diseases. How exactly binding to DNA and RNA is coordinated by the Arid5a ARID domain remains unknown, mainly due to the lack of atom-resolved information on nucleic acid-binding. This in particular applies to the protein's ARID domain, despite the comfortable size of its core unit for NMR-based investigations. Furthermore, the core domain of ARID domains is found to be extended by functionally relevant, often flexible stretches, but whether such elongations are present and crucial for the versatile Arid5a functions is unknown. We here provide a near-complete NMR backbone resonance assignment of the Arid5a ARID domain with N- and C-terminal extensions, which serves as a basis for further studies of its nucleic acid-binding preferences and targeted inhibition by means of NMR. Our data thus significantly contribute to unravelling mechanisms of Arid5a-mediated gene regulation and diseases.


Subject(s)
DNA-Binding Proteins , Nucleic Acids , Humans , DNA-Binding Proteins/chemistry , Magnetic Resonance Spectroscopy , Nuclear Magnetic Resonance, Biomolecular
6.
Int J Mol Sci ; 24(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36834708

ABSTRACT

The family of scaffold attachment factor B (SAFB) proteins comprises three members and was first identified as binders of the nuclear matrix/scaffold. Over the past two decades, SAFBs were shown to act in DNA repair, mRNA/(l)ncRNA processing and as part of protein complexes with chromatin-modifying enzymes. SAFB proteins are approximately 100 kDa-sized dual nucleic acid-binding proteins with dedicated domains in an otherwise largely unstructured context, but whether and how they discriminate DNA and RNA binding has remained enigmatic. We here provide the SAFB2 DNA- and RNA-binding SAP and RRM domains in their functional boundaries and use solution NMR spectroscopy to ascribe DNA- and RNA-binding functions. We give insight into their target nucleic acid preferences and map the interfaces with respective nucleic acids on sparse data-derived SAP and RRM domain structures. Further, we provide evidence that the SAP domain exhibits intra-domain dynamics and a potential tendency to dimerize, which may expand its specifically targeted DNA sequence range. Our data provide a first molecular basis of and a starting point towards deciphering DNA- and RNA-binding functions of SAFB2 on the molecular level and serve a basis for understanding its localization to specific regions of chromatin and its involvement in the processing of specific RNA species.


Subject(s)
Chromatin , RNA , RNA/metabolism , RNA, Messenger/metabolism , Base Sequence , Magnetic Resonance Spectroscopy , Binding Sites
7.
Angew Chem Int Ed Engl ; 62(14): e202217171, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36748955

ABSTRACT

The outbreak of COVID-19 in December 2019 required the formation of international consortia for a coordinated scientific effort to understand and combat the virus. In this Viewpoint Article, we discuss how the NMR community has gathered to investigate the genome and proteome of SARS-CoV-2 and tested them for binding to low-molecular-weight binders. External factors including extended lockdowns due to the global pandemic character of the viral infection triggered the transition from locally focused collaborative research conducted within individual research groups to digital exchange formats for immediate discussion of unpublished results and data analysis, sample sharing, and coordinated research between more than 50 groups from 18 countries simultaneously. We discuss key lessons that might pertain after the end of the pandemic and challenges that we need to address.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Communicable Disease Control , Magnetic Resonance Spectroscopy , Magnetic Resonance Imaging
8.
Biomolecules ; 12(7)2022 07 02.
Article in English | MEDLINE | ID: mdl-35883485

ABSTRACT

The SARS-CoV-2 nucleocapsid (N) protein is crucial for the highly organized packaging and transcription of the genomic RNA. Studying atomic details of the role of its intrinsically disordered regions (IDRs) in RNA recognition is challenging due to the absence of structure and to the repetitive nature of their primary sequence. IDRs are known to act in concert with the folded domains of N and here we use NMR spectroscopy to identify the priming events of N interacting with a regulatory SARS-CoV-2 RNA element. 13C-detected NMR experiments, acquired simultaneously to 1H detected ones, provide information on the two IDRs flanking the N-terminal RNA binding domain (NTD) within the N-terminal region of the protein (NTR, 1-248). We identify specific tracts of the IDRs that most rapidly sense and engage with RNA, and thus provide an atom-resolved picture of the interplay between the folded and disordered regions of N during RNA interaction.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Magnetic Resonance Spectroscopy , Protein Binding , RNA, Viral/metabolism
9.
Nucleic Acids Res ; 50(7): 4083-4099, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35357505

ABSTRACT

Control of posttranscriptional mRNA decay is a crucial determinant of cell homeostasis and differentiation. mRNA lifetime is governed by cis-regulatory elements in their 3' untranslated regions (UTR). Despite ongoing progress in the identification of cis elements we have little knowledge about the functional and structural integration of multiple elements in 3'UTR regulatory hubs and their recognition by mRNA-binding proteins (RBPs). Structural analyses are complicated by inconsistent mapping and prediction of RNA fold, by dynamics, and size. We here, for the first time, provide the secondary structure of a complete mRNA 3'UTR. We use NMR spectroscopy in a divide-and-conquer strategy complemented with SAXS, In-line probing and SHAPE-seq applied to the 3'UTR of Ox40 mRNA, which encodes a T-cell co-receptor repressed by the protein Roquin. We provide contributions of RNA elements to Roquin-binding. The protein uses its extended bi-modal ROQ domain to sequentially engage in a 2:1 stoichiometry with a 3'UTR core motif. We observe differential binding of Roquin to decay elements depending on their structural embedment. Our data underpins the importance of studying RNA regulation in a full sequence and structural context. This study serves as a paradigm for an approach in analysing structured RNA-regulatory hubs and their binding by RBPs.


Subject(s)
3' Untranslated Regions , Nucleic Acid Conformation , Magnetic Resonance Spectroscopy , RNA, Messenger/metabolism , Scattering, Small Angle , X-Ray Diffraction
10.
Biol Chem ; 403(8-9): 731-747, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35119801

ABSTRACT

The DNA-binding AT-rich interactive domain (ARID) exists in a wide range of proteins throughout eukaryotic kingdoms. ARID domain-containing proteins are involved in manifold biological processes, such as transcriptional regulation, cell cycle control and chromatin remodeling. Their individual domain composition allows for a sub-classification within higher mammals. ARID is categorized as binder of double-stranded AT-rich DNA, while recent work has suggested ARIDs as capable of binding other DNA motifs and also recognizing RNA. Despite a broad variability on the primary sequence level, ARIDs show a highly conserved fold, which consists of six α-helices and two loop regions. Interestingly, this minimal core domain is often found extended by helices at the N- and/or C-terminus with potential roles in target specificity and, subsequently function. While high-resolution structural information from various types of ARIDs has accumulated over two decades now, there is limited access to ARID-DNA complex structures. We thus find ourselves left at the beginning of understanding ARID domain target specificities and the role of accompanying domains. Here, we systematically summarize ARID domain conservation and compare the various types with a focus on their structural differences and DNA-binding preferences, including the context of multiple other motifs within ARID domain containing proteins.


Subject(s)
DNA-Binding Proteins , Eukaryota , Amino Acid Sequence , Animals , DNA/chemistry , DNA-Binding Proteins/metabolism , Eukaryota/metabolism , Mammals/genetics , Mammals/metabolism , Protein Binding , Sequence Alignment
11.
Biomol NMR Assign ; 16(1): 17-25, 2022 04.
Article in English | MEDLINE | ID: mdl-35178672

ABSTRACT

The ongoing pandemic of the respiratory disease COVID-19 is caused by the SARS-CoV-2 (SCoV2) virus. SCoV2 is a member of the Betacoronavirus genus. The 30 kb positive sense, single stranded RNA genome of SCoV2 features 5'- and 3'-genomic ends that are highly conserved among Betacoronaviruses. These genomic ends contain structured cis-acting RNA elements, which are involved in the regulation of viral replication and translation. Structural information about these potential antiviral drug targets supports the development of novel classes of therapeutics against COVID-19. The highly conserved branched stem-loop 5 (SL5) found within the 5'-untranslated region (5'-UTR) consists of a basal stem and three stem-loops, namely SL5a, SL5b and SL5c. Both, SL5a and SL5b feature a 5'-UUUCGU-3' hexaloop that is also found among Alphacoronaviruses. Here, we report the extensive 1H, 13C and 15N resonance assignment of the 37 nucleotides (nts) long sequence spanning SL5b and SL5c (SL5b + c), as basis for further in-depth structural studies by solution NMR spectroscopy.


Subject(s)
COVID-19 , SARS-CoV-2 , 5' Untranslated Regions , Humans , Magnetic Resonance Spectroscopy , Nuclear Magnetic Resonance, Biomolecular
12.
Chembiochem ; 23(3): e202100564, 2022 02 04.
Article in English | MEDLINE | ID: mdl-34847270

ABSTRACT

Riboswitches are regulatory RNA elements that undergo functionally important allosteric conformational switching upon binding of specific ligands. The here investigated guanidine-II riboswitch binds the small cation, guanidinium, and forms a kissing loop-loop interaction between its P1 and P2 hairpins. We investigated the structural changes to support previous studies regarding the binding mechanism. Using NMR spectroscopy, we confirmed the structure as observed in crystal structures and we characterized the kissing loop interaction upon addition of Mg2+ and ligand for the riboswitch aptamer from Escherichia coli. We further investigated closely related mutant constructs providing further insight into functional differences between the two (different) hairpins P1 and P2. Formation of intermolecular interactions were probed by small-angle X-ray scattering (SAXS) and NMR DOSY data. All data are consistent and show the formation of oligomeric states of the riboswitch induced by Mg2+ and ligand binding.


Subject(s)
Escherichia coli/chemistry , Guanidine/chemistry , Guanidine/metabolism , Magnetic Resonance Spectroscopy , Riboswitch , Scattering, Small Angle , X-Ray Diffraction
13.
Biomol NMR Assign ; 15(2): 467-474, 2021 10.
Article in English | MEDLINE | ID: mdl-34453696

ABSTRACT

The stem-loop (SL1) is the 5'-terminal structural element within the single-stranded SARS-CoV-2 RNA genome. It is formed by nucleotides 7-33 and consists of two short helical segments interrupted by an asymmetric internal loop. This architecture is conserved among Betacoronaviruses. SL1 is present in genomic SARS-CoV-2 RNA as well as in all subgenomic mRNA species produced by the virus during replication, thus representing a ubiquitous cis-regulatory RNA with potential functions at all stages of the viral life cycle. We present here the 1H, 13C and 15N chemical shift assignment of the 29 nucleotides-RNA construct 5_SL1, which denotes the native 27mer SL1 stabilized by an additional terminal G-C base-pair.


Subject(s)
5' Untranslated Regions , Nuclear Magnetic Resonance, Biomolecular , SARS-CoV-2/genetics , Nucleic Acid Conformation , RNA, Spliced Leader
15.
Angew Chem Int Ed Engl ; 60(35): 19191-19200, 2021 08 23.
Article in English | MEDLINE | ID: mdl-34161644

ABSTRACT

SARS-CoV-2 contains a positive single-stranded RNA genome of approximately 30 000 nucleotides. Within this genome, 15 RNA elements were identified as conserved between SARS-CoV and SARS-CoV-2. By nuclear magnetic resonance (NMR) spectroscopy, we previously determined that these elements fold independently, in line with data from in vivo and ex-vivo structural probing experiments. These elements contain non-base-paired regions that potentially harbor ligand-binding pockets. Here, we performed an NMR-based screening of a poised fragment library of 768 compounds for binding to these RNAs, employing three different 1 H-based 1D NMR binding assays. The screening identified common as well as RNA-element specific hits. The results allow selection of the most promising of the 15 RNA elements as putative drug targets. Based on the identified hits, we derive key functional units and groups in ligands for effective targeting of the RNA of SARS-CoV-2.


Subject(s)
Genome , RNA, Viral/metabolism , SARS-CoV-2/genetics , Small Molecule Libraries/metabolism , Drug Evaluation, Preclinical , Ligands , Molecular Structure , Nucleic Acid Conformation , Proton Magnetic Resonance Spectroscopy , RNA, Viral/chemistry , Small Molecule Libraries/chemistry
16.
Structure ; 29(8): 787-803, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34022128

ABSTRACT

Insulin-like growth factor 2 mRNA-binding proteins (IMPs, IGF2BPs) act in mRNA transport and translational control but are oncofetal tumor marker proteins. The IMP protein family represents a number of bona fide multi-domain RNA-binding proteins with up to six RNA-binding domains, resulting in a high complexity of possible modes of interactions with target mRNAs. Their exact mechanism in stability control of oncogenic mRNAs is only partially understood. Our and other laboratories' recent work has significantly pushed the understanding of IMP protein specificities both toward RNA engagement and between each other from NMR and crystal structures serving the basis for systematic biochemical and functional investigations. We here summarize the known structural and biochemical information about IMP RNA-binding domains and their RNA preferences. The article also touches on the respective roles of RNA secondary and protein tertiary structures for specific RNA-protein complexes, including the limited knowledge about IMPs' protein-protein interactions, which are often RNA mediated.


Subject(s)
RNA, Messenger/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Animals , Binding Sites , Crystallography, X-Ray , Humans , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Structure, Tertiary , RNA, Messenger/chemistry
17.
Biomol NMR Assign ; 15(2): 335-340, 2021 10.
Article in English | MEDLINE | ID: mdl-33928512

ABSTRACT

The SARS-CoV-2 virus is the cause of the respiratory disease COVID-19. As of today, therapeutic interventions in severe COVID-19 cases are still not available as no effective therapeutics have been developed so far. Despite the ongoing development of a number of effective vaccines, therapeutics to fight the disease once it has been contracted will still be required. Promising targets for the development of antiviral agents against SARS-CoV-2 can be found in the viral RNA genome. The 5'- and 3'-genomic ends of the 30 kb SCoV-2 genome are highly conserved among Betacoronaviruses and contain structured RNA elements involved in the translation and replication of the viral genome. The 40 nucleotides (nt) long highly conserved stem-loop 4 (5_SL4) is located within the 5'-untranslated region (5'-UTR) important for viral replication. 5_SL4 features an extended stem structure disrupted by several pyrimidine mismatches and is capped by a pentaloop. Here, we report extensive 1H, 13C, 15N and 31P resonance assignments of 5_SL4 as the basis for in-depth structural and ligand screening studies by solution NMR spectroscopy.


Subject(s)
5' Untranslated Regions , Nuclear Magnetic Resonance, Biomolecular , SARS-CoV-2/genetics , Inverted Repeat Sequences/genetics
18.
Biomol NMR Assign ; 15(2): 235-241, 2021 10.
Article in English | MEDLINE | ID: mdl-33755914

ABSTRACT

As part of an International consortium aiming at the characterization by NMR of the proteins of the SARS-CoV-2 virus, we have obtained the virtually complete assignment of the backbone atoms of the non-structural protein nsp9. This small (12 kDa) protein is encoded by ORF1a, binds to RNA and seems to be essential for viral RNA synthesis. The crystal structures of the SARS-CoV-2 protein and other homologues suggest that the protein is dimeric as also confirmed by analytical ultracentrifugation and dynamic light scattering. Our data constitute the prerequisite for further NMR-based characterization, and provide the starting point for the identification of small molecule lead compounds that could interfere with RNA binding and prevent viral replication.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular , RNA-Binding Proteins/chemistry , Viral Nonstructural Proteins/chemistry , Hydrogen-Ion Concentration , Models, Molecular , Protein Structure, Secondary
19.
Biomol NMR Assign ; 15(2): 287-295, 2021 10.
Article in English | MEDLINE | ID: mdl-33770349

ABSTRACT

The current COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has become a worldwide health crisis, necessitating coordinated scientific research and urgent identification of new drug targets for treatment of COVID-19 lung disease. The covid19-nmr consortium seeks to support drug development by providing publicly accessible NMR data on the viral RNA elements and proteins. The SARS-CoV-2 genome comprises a single RNA of about 30 kb in length, in which 14 open reading frames (ORFs) have been annotated, and encodes approximately 30 proteins. The first two-thirds of the SARS-CoV-2 genome is made up of two large overlapping open-reading-frames (ORF1a and ORF1b) encoding a replicase polyprotein, which is subsequently cleaved to yield 16 so-called non-structural proteins. The non-structural protein 1 (Nsp1), which is considered to be a major virulence factor, suppresses host immune functions by associating with host ribosomal complexes at the very end of its C-terminus. Furthermore, Nsp1 facilitates initiation of viral RNA translation via an interaction of its N-terminal domain with the 5' untranslated region (UTR) of the viral RNA. Here, we report the near-complete backbone chemical-shift assignments of full-length SARS-CoV-2 Nsp1 (19.8 kDa), which reveal the domain organization, secondary structure and backbone dynamics of Nsp1, and which will be of value to further NMR-based investigations of both the biochemical and physiological functions of Nsp1.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular , SARS-CoV-2 , Viral Nonstructural Proteins/chemistry , Models, Molecular , Protein Domains
20.
Biomol NMR Assign ; 15(1): 203-211, 2021 04.
Article in English | MEDLINE | ID: mdl-33484403

ABSTRACT

The SARS-CoV-2 (SCoV-2) virus is the causative agent of the ongoing COVID-19 pandemic. It contains a positive sense single-stranded RNA genome and belongs to the genus of Betacoronaviruses. The 5'- and 3'-genomic ends of the 30 kb SCoV-2 genome are potential antiviral drug targets. Major parts of these sequences are highly conserved among Betacoronaviruses and contain cis-acting RNA elements that affect RNA translation and replication. The 31 nucleotide (nt) long highly conserved stem-loop 5a (SL5a) is located within the 5'-untranslated region (5'-UTR) important for viral replication. SL5a features a U-rich asymmetric bulge and is capped with a 5'-UUUCGU-3' hexaloop, which is also found in stem-loop 5b (SL5b). We herein report the extensive 1H, 13C and 15N resonance assignment of SL5a as basis for in-depth structural studies by solution NMR spectroscopy.


Subject(s)
5' Untranslated Regions , Coronavirus Papain-Like Proteases/chemistry , Magnetic Resonance Spectroscopy , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Carbon Isotopes , Genes, Viral , Hydrogen , Nitrogen Isotopes , Protein Binding , Protein Domains , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...