Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 130(1): 315-328, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31613796

ABSTRACT

Tyrosine kinase inhibitors (TKIs) induce molecular remission in the majority of patients with chronic myelogenous leukemia (CML), but the persistence of CML stem cells hinders cure and necessitates indefinite TKI therapy. We report that CML stem cells upregulate the expression of pleiotrophin (PTN) and require cell-autonomous PTN signaling for CML pathogenesis in BCR/ABL+ mice. Constitutive PTN deletion substantially reduced the numbers of CML stem cells capable of initiating CML in vivo. Hematopoietic cell-specific deletion of PTN suppressed CML development in BCR/ABL+ mice, suggesting that cell-autonomous PTN signaling was necessary for CML disease evolution. Mechanistically, PTN promoted CML stem cell survival and TKI resistance via induction of Jun and the unfolded protein response. Human CML cells were also dependent on cell-autonomous PTN signaling, and anti-PTN antibody suppressed human CML colony formation and CML repopulation in vivo. Our results suggest that targeted inhibition of PTN has therapeutic potential to eradicate CML stem cells.


Subject(s)
Carrier Proteins/metabolism , Cytokines/metabolism , Fusion Proteins, bcr-abl/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Neoplastic Stem Cells/metabolism , Signal Transduction , Animals , Carrier Proteins/genetics , Cell Survival , Cytokines/genetics , Fusion Proteins, bcr-abl/genetics , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mice , Mice, Transgenic , Neoplastic Stem Cells/pathology
2.
Radiat Res ; 192(1): 53-62, 2019 07.
Article in English | MEDLINE | ID: mdl-31081743

ABSTRACT

Acute high-dose radiation injury damages the bone marrow hematopoietic stem and progenitor cell compartment. This damage compromises the functional ability of the bone marrow to produce mature blood cells and results in an increased risk of death due to hematopoietic complications. Past work has shown that the bone marrow endothelium provides critical cues, which promote hematopoietic stem cell regeneration after injury. Additionally, transfusion of endothelial cells after radiation injury has been shown to promote recovery of both the bone marrow vasculature and hematopoietic systems. In this work, we examined the regenerative capacity of intravenous infusion of umbilical cord-blood derived endothelial progenitor cells (EPCs) since this is a cell source which is easy to obtain, expand and cryopreserve. We show that pre-treatment with the Wnt-antagonist Dickkopf1 (Dkk1) augments EPC regenerative function in an allogeneic mouse transplant model. Here, hematopoietic recovery was assessed in Balb/c mice after 5 Gy total-body irradiation and transplantation with C57/BL6-derived EPCs either with or without Dkk1 pre-treatment. The Dkk1-treated EPC group had significantly faster recovery of peripheral white blood cells, total bone marrow cellularity, bone marrow progenitors and BM endothelial cells compared to EPC treatment alone or saline controls. Importantly, after an LD50/30 dose of 8 Gy in the Balb/c mouse, Dkk1-treated EPCs were able to rescue 100% of irradiated mice versus 80% in the EPC control group and only 33% in the saline-treated group. To understand how Dkk1 induces regenerative function in the EPCs, we screened for pro-regenerative factors secreted by the EPC in response to Dkk1. Dkk1-treated EPCs were observed to secrete high levels of the anti-fibrotic protein follistatin as well as several proteins known to promote regeneration including EGF, VEGF and G-CSF. This work demonstrates the potential for Dkk1-treated EPCs as a rescue therapeutic for victims of acute radiation injury.


Subject(s)
Endothelial Progenitor Cells/cytology , Endothelial Progenitor Cells/drug effects , Hematopoiesis/drug effects , Intercellular Signaling Peptides and Proteins/pharmacology , Animals , Endothelial Progenitor Cells/radiation effects , Female , Hematopoiesis/radiation effects , Humans , Mice , Mice, Inbred BALB C , Regeneration/drug effects , Regeneration/radiation effects
3.
Cell Stem Cell ; 23(3): 370-381.e5, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30100167

ABSTRACT

Bone marrow (BM) perivascular stromal cells and vascular endothelial cells (ECs) are essential for hematopoietic stem cell (HSC) maintenance, but the roles of distinct niche compartments during HSC regeneration are less understood. Here we show that Leptin receptor-expressing (LepR+) BM stromal cells and ECs dichotomously regulate HSC maintenance and regeneration via secretion of pleiotrophin (PTN). BM stromal cells are the key source of PTN during steady-state hematopoiesis because its deletion from stromal cells, but not hematopoietic cells, osteoblasts, or ECs, depletes the HSC pool. Following myelosuppressive irradiation, PTN expression is increased in bone marrow endothelial cells (BMECs), and PTN+ ECs are more frequent in the niche. Moreover, deleting Ptn from ECs impairs HSC regeneration whereas Ptn deletion from BM stromal cells does not. These findings reveal dichotomous and complementary regulation of HSC maintenance and regeneration by BM stromal cells and ECs.


Subject(s)
Bone Marrow/metabolism , Carrier Proteins/metabolism , Cell Self Renewal , Cytokines/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Animals , Cytokines/deficiency , Female , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...