Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Blood ; 139(8): 1184-1197, 2022 02 24.
Article in English | MEDLINE | ID: mdl-33908607

ABSTRACT

Cancer cells are in most instances characterized by rapid proliferation and uncontrolled cell division. Hence, they must adapt to proliferation-induced metabolic stress through intrinsic or acquired antimetabolic stress responses to maintain homeostasis and survival. One mechanism to achieve this is reprogramming gene expression in a metabolism-dependent manner. MondoA (also known as Myc-associated factor X-like protein X-interacting protein [MLXIP]), a member of the MYC interactome, has been described as an example of such a metabolic sensor. However, the role of MondoA in malignancy is not fully understood and the underlying mechanism in metabolic responses remains elusive. By assessing patient data sets, we found that MondoA overexpression is associated with worse survival in pediatric common acute lymphoblastic leukemia (ALL; B-precursor ALL [B-ALL]). Using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) and RNA-interference approaches, we observed that MondoA depletion reduces the transformational capacity of B-ALL cells in vitro and dramatically inhibits malignant potential in an in vivo mouse model. Interestingly, reduced expression of MondoA in patient data sets correlated with enrichment in metabolic pathways. The loss of MondoA correlated with increased tricarboxylic acid cycle activity. Mechanistically, MondoA senses metabolic stress in B-ALL cells by restricting oxidative phosphorylation through reduced pyruvate dehydrogenase activity. Glutamine starvation conditions greatly enhance this effect and highlight the inability to mitigate metabolic stress upon loss of MondoA in B-ALL. Our findings give novel insight into the function of MondoA in pediatric B-ALL and support the notion that MondoA inhibition in this entity offers a therapeutic opportunity and should be further explored.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Neoplasm Proteins/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Stress, Physiological , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Cell Line, Tumor , Humans , Mice , Mice, Inbred BALB C , Mice, Knockout , Neoplasm Proteins/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics
3.
Pediatr Blood Cancer ; 64(10)2017 Oct.
Article in English | MEDLINE | ID: mdl-28371317

ABSTRACT

BACKGROUND: A high-level expression of the CRLF2 gene is frequent in precursor B-cell acute lymphoblastic leukemia (pB-ALL) and can be caused by different genetic aberrations. The presence of the most frequent alteration, the P2RY8/CRLF2 fusion, was shown to be associated with a high relapse incidence in children treated according to ALL-Berlin-Frankfurt-Münster (BFM) protocols, which is poorly understood. Moreover, the frequency of other alterations has not been systematically analyzed yet. PROCEDURE: CRLF2 mRNA expression and potential genetic aberrations causing a CRLF2 high expression were prospectively assessed in 1,105 patients treated according to the Associazione Italiana Ematologia Oncologia Pediatrica (AIEOP)-BFM ALL 2009 protocol. Additionally, we determined copy number alterations in selected B-cell differentiation genes for all CRLF2 high-expressing pB-ALL cases, as well as JAK2 and CRLF2 mutations. RESULTS: A CRLF2 high expression was detected in 26/178 (15%) T-cell acute lymphoblastic leukemia (T-ALL) cases, 21 of them (81%) had been stratified as high-risk patients by treatment response. In pB-ALL, a CRLF2 high expression was determined in 91/927 (10%) cases; the P2RY8/CRLF2 rearrangement in 44/91 (48%) of them, supernumerary copies of CRLF2 in 18/91 (20%), and, notably, the IGH/CRLF2 translocation was detected in 16/91 (18%). Remarkably, 7 of 16 (44%) patients with IGH/CRLF2 translocation had already relapsed. P2RY8/CRLF2- and IGH/CRLF2-positive samples (70 and 94%, respectively) were characterized by a high frequency of additional deletions in B-cell differentiation genes such as IKZF1 or PAX5. CONCLUSION: Our data suggest that this high frequency of genetic aberrations in the context of a high CRLF2 expression could contribute to the high risk of relapse in P2RY8/CRLF2- and IGH/CRLF2-positive ALL.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Gene Expression Regulation, Leukemic/drug effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptors, Cytokine/biosynthesis , Adolescent , Asparaginase/administration & dosage , Child , Child, Preschool , Daunorubicin/administration & dosage , Female , Gene Rearrangement , Humans , Ikaros Transcription Factor/biosynthesis , Ikaros Transcription Factor/genetics , Infant , Male , Oncogene Proteins, Fusion/biosynthesis , Oncogene Proteins, Fusion/genetics , PAX5 Transcription Factor/biosynthesis , PAX5 Transcription Factor/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Prednisone/administration & dosage , Receptors, Cytokine/genetics , Receptors, Purinergic P2Y/biosynthesis , Receptors, Purinergic P2Y/genetics , Vincristine/administration & dosage
4.
Article in English | MEDLINE | ID: mdl-25052703

ABSTRACT

Alternative polyadenylation (APA) is a widespread mechanism that contributes to the sophisticated dynamics of gene regulation. Approximately 50% of all protein-coding human genes harbor multiple polyadenylation (PA) sites; their selective and combinatorial use gives rise to transcript variants with differing length of their 3' untranslated region (3'UTR). Shortened variants escape UTR-mediated regulation by microRNAs (miRNAs), especially in cancer, where global 3'UTR shortening accelerates disease progression, dedifferentiation and proliferation. Here we present APADB, a database of vertebrate PA sites determined by 3' end sequencing, using massive analysis of complementary DNA ends. APADB provides (A)PA sites for coding and non-coding transcripts of human, mouse and chicken genes. For human and mouse, several tissue types, including different cancer specimens, are available. APADB records the loss of predicted miRNA binding sites and visualizes next-generation sequencing reads that support each PA site in a genome browser. The database tables can either be browsed according to organism and tissue or alternatively searched for a gene of interest. APADB is the largest database of APA in human, chicken and mouse. The stored information provides experimental evidence for thousands of PA sites and APA events. APADB combines 3' end sequencing data with prediction algorithms of miRNA binding sites, allowing to further improve prediction algorithms. Current databases lack correct information about 3'UTR lengths, especially for chicken, and APADB provides necessary information to close this gap. Database URL: http://tools.genxpro.net/apadb/.


Subject(s)
Computational Biology/methods , Databases, Genetic , MicroRNAs , Polyadenylation , Animals , Chickens , Database Management Systems , Humans , Mice , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...