Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Bot ; 108(8): 1525-1539, 2021 08.
Article in English | MEDLINE | ID: mdl-34458978

ABSTRACT

PREMISE: Chloroplast movement to the anticlinal walls in excess light, referred to as chloroplast avoidance movement, is one strategy to prevent high light damage. Chloroplast avoidance movement is mediated by the blue-light photoreceptor phototropin. Since some blue-light effects are reversed by green light, we investigated the effect of green wavelengths on chloroplast avoidance. METHODS: Chloroplast position was visualized via microscopy and by transmission of red light through the leaves of Arabidopsis thaliana and Landoltia punctata (duckweed). RESULTS: Green light reduced blue-light-induced chloroplast avoidance movement but only when green light was presented simultaneously with blue light. Green light alone had no effect on chloroplast position. An action spectrum for green-light attenuation of chloroplast avoidance in duckweed revealed peaks at 510, 550, and 590 nm. Blue-light-induced chloroplast avoidance movement in three Arabidopsis mutants with reduced nonphotochemical quenching, npq1, npq4, and npq7 was not affected by green light. CONCLUSIONS: The action spectrum does not conform to any known photoreceptor. The lack of a green-light response in the npq mutants of Arabidopsis suggests a possible role for the xanthophyll cycle or a signal from the chloroplast in control of chloroplast avoidance movement.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Araceae , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chloroplasts , Plant Leaves
2.
J Econ Entomol ; 97(3): 1096-105, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15279296

ABSTRACT

We investigated the effect of different levels of infestation by whiteflies, Bemisia argentifolii Bellows & Perring, on the growth and pigment concentrations of seedlings of zucchini, Cucurbita pepo L., that differed in their tolerance to squash silverleaf disorder. Genetically similar sister lines that were either tolerant (ZUC76-SLR) or susceptible (ZUC61) to silverleaf disorder exhibited reduced plant height, internode length, plant dry weight, and petiole length in response to whitefly feeding. Similar plant growth responses to whitefly feeding were observed despite that the foliage of ZUC61 silvered severely, whereas the foliage of ZUC76-SLR showed no silvering in a greenhouse experiment conducted in the spring and showed only minimal silvering in a similar greenhouse experiment conducted in the fall. In plants of both sister lines infested with 50 pairs of whiteflies and their progeny, petioles, but not the leaf blades, of uninfested leaves had reduced chlorophyll content. In another experiment, two different genetic sources of tolerance to silverleaf disorder (ZUC33-SLR/PMR and ZUC76-SLR) and a commercial silverleaf-susceptible zucchini hybrid ('Zucchini Elite') responded similarly to whitefly feeding, except the tolerant genotypes did not exhibit leaf silvering. All genotypes, silverleaf tolerant or not, had reduced dry weight, plant height, and internode length that became more pronounced as whitefly infestation increased. All genotypes had reduced levels of chlorophylls and carotenoids in uninfested young leaf blades and petioles from infested plants. Petioles, however, were more affected by feeding than leaf blades, showing a 66% reduction in chlorophylls a+b and carotenoids at the lowest infestation level (30 pairs of whitefly and their progeny), whereas pigments in leaf blades declined more slowly in response to whitefly feeding density, averaging 14-15% less at the highest infestation level (90 pairs of whitefly and their progeny). We conclude that tolerance to silverleaf disorder does not prevent stunting in zucchini seedlings nor does it protect against the systemic loss of photosynthetic and protoprotectant pigments induced by feeding of B. argentifolii whiteflies.


Subject(s)
Cucurbita/growth & development , Hemiptera/physiology , Plant Diseases , Seedlings/growth & development , Animals , Carotenoids/analysis , Chlorophyll/analysis , Cucurbita/genetics , Genotype , Plant Leaves/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...