Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 68(11)2023 05 29.
Article in English | MEDLINE | ID: mdl-37164021

ABSTRACT

Objective. The all-in-one solution and modularity of the C13500 series TOF-PET detector modules (Hamamatsu Photonics K.K., Hamamatsu, Japan) make them a highly attractive candidate for the development of positron emission tomography (PET) systems. However, the commercially available portfolio targets clinical whole-body PET systems with a scintillation crystal cross area of 3.1 × 3.1 mm2. To extend the modules for high resolution (preclinical or organ specific) systems, the support for smaller scintillation crystals is required.Approach.In this work, a PET detector was developed based on the TOF-PET modules using a light sharing approach, 16 × 16 lutetium oxyorthosilicate (LSO) scintillation crystals with a size of 1.51 × 1.51 × 10.00 mm3readout with 8 × 8 photosensor channels of size 3.0 × 3.0 mm2. In addition to hardware and software development, the optimized parameter settings for the adapted configuration were evaluated.Main Results.A factor of two in amplification of the analog signal compared to the minimum gain setting was necessary for an accurate crystal identification (peak-to-valley ratio 14.9 ± 5.9). A further increase to a factor of three was not determined as optimum as the time over threshold duration, thus pile-up probability, increased from 1032.1 ± 109.5 to 1789.5 ± 218.5 ns (photopeak position). With this amplification a full width at half maximum (FWHM) energy resolution of 14.1 ± 2.0% and a high linearity of the energy detection was obtained. A FWHM coincidence resolving time (CRT) of 313 ps was achieved by using a low timing threshold, increasing the bandwidth of the front-end circuit and using a narrow ± 1σenergy window. To approximately double the sensitivity and reduce the power consumption, the timing parameters were adjusted resulting in a FWHM CRT of 354 ps (±2σ).Significance.Based on the results obtained with the proof-of-concept detector setup, we confirm the modularity and flexibility of the all-in-one TOF-PET detector modules for the future development of application-specific high-resolution PET systems.


Subject(s)
Electronics , Positron-Emission Tomography , Positron-Emission Tomography/methods , Time
2.
Phys Med Biol ; 55(19): 5883-93, 2010 Oct 07.
Article in English | MEDLINE | ID: mdl-20844336

ABSTRACT

The integration of magnetic resonance imaging (MRI) and positron emission tomography (PET) is an upcoming hybrid imaging technique. Prototype scanners for pre-clinical and clinical research have been built and tested. However, the potential of the PET part can be better exploited if the arterial input function (AIF) of the administered tracer is known. This work presents a dedicated MR-compatible blood sampling system for precise measurement of the AIF in an MR-PET study. The device basically consists of an LSO/APD-detector assembly which performs a coincidence measurement of the annihilation photons resulting from positron decays. During the measurement, arterial blood is drawn continuously from an artery and lead through the detector unit. Besides successful tests of the MR compatibility and the detector performance, measurements of the AIF of rats have been carried out. The results show that the developed blood sampling system is a practical and reliable tool for measuring the AIF in MR-PET studies.


Subject(s)
Blood/diagnostic imaging , Magnetic Resonance Imaging/instrumentation , Positron-Emission Tomography/instrumentation , Systems Integration , Animals , Arteries/diagnostic imaging , Arteries/physiology , Humans , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...