Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Genetics ; 223(3)2023 03 02.
Article in English | MEDLINE | ID: mdl-36655746

ABSTRACT

Maternal reprogramming of histone methylation is critical for reestablishing totipotency in the zygote, but how histone-modifying enzymes are regulated during maternal reprogramming is not well characterized. To address this gap, we asked whether maternal reprogramming by the H3K4me1/2 demethylase SPR-5/LSD1/KDM1A, is regulated by the chromatin co-repressor protein, SPR-1/CoREST, in Caenorhabditis elegans and mice. In C. elegans, SPR-5 functions as part of a reprogramming switch together with the H3K9 methyltransferase MET-2. By examining germline development, fertility, and gene expression in double mutants between spr-1 and met-2, as well as fertility in double mutants between spr-1 and spr-5, we find that loss of SPR-1 results in a partial loss of SPR-5 maternal reprogramming function. In mice, we generated a separation of function Lsd1 M448V point mutation that compromises CoREST binding, but only slightly affects LSD1 demethylase activity. When maternal LSD1 in the oocyte is derived exclusively from this allele, the progeny phenocopy the increased perinatal lethality that we previously observed when LSD1 was reduced maternally. Together, these data are consistent with CoREST having a conserved function in facilitating maternal LSD1 epigenetic reprogramming.


Subject(s)
Caenorhabditis elegans , Histones , Mice , Animals , Histones/genetics , Histones/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Surface Plasmon Resonance , Histone Demethylases/genetics , Histone Demethylases/metabolism , Epigenesis, Genetic
2.
Article in English | MEDLINE | ID: mdl-36874387

ABSTRACT

Participation in research provides personal and professional benefits for undergraduates. However, some students face institutional barriers that prevent their entry into research, particularly those from underrepresented groups who may stand to gain the most from research experiences. Course-based undergraduate research experiences (CUREs) effectively scale research availability, but many only last for a single semester, which is rarely enough time for a novice to develop proficiency. To address these challenges, we present the Pipeline CURE, a framework that integrates a single research question throughout a biology curriculum. Students are introduced to the research system - in this implementation, C. elegans epigenetics research - with their first course in the major. After revisiting the research system in several subsequent courses, students can choose to participate in an upper-level research experience. In the Pipeline, students build resilience via repeated exposure to the same research system. Its iterative, curriculum-embedded approach is flexible enough to be implemented at a range of institutions using a variety of research questions. By uniting evidence-based teaching methods with ongoing scientific research, the Pipeline CURE provides a new model for overcoming barriers to participation in undergraduate research.

3.
Environ Health Perspect ; 115(1): 165-71, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17366838

ABSTRACT

The Centers for Disease Control and Prevention (CDC) continues to be aware of the need for response to public concern as well as to state and local agency concern about cancer clusters. In 1990 the CDC published the "Guidelines for Investigating Clusters of Health Events," in which a four-stage process was presented. This document has provided a framework that most state health departments have adopted, with modifications pertaining to their specific situations, available resources, and philosophy concerning disease clusters. The purpose of this present article is not to revise the CDC guidelines; they retain their original usefulness and validity. However, in the past 15 years, multiple cluster studies as well as scientific and technologic developments have affected duster science and response (improvements in cancer registries, a federal initiative in environmental public health tracking, refinement of biomarker technology, cluster identification using geographic information systems software, and the emergence of the Internet). Thus, we offer an addendum for use with the original document. Currently, to address both the needs of state health departments as well as public concern, the CDC now a) provides a centralized, coordinated response system for cancer cluster inquiries, b) supports an electronic cancer cluster listserver, c) maintains an informative web page, and d) provides support to states, ranging from laboratory analysis to epidemiologic assistance and expertise. Response to cancer clusters is appropriate public health action, and the CDC will continue to provide assistance, facilitate communication among states, and foster the development of new approaches in duster science.


Subject(s)
Environmental Exposure , Neoplasms/epidemiology , Centers for Disease Control and Prevention, U.S. , Cluster Analysis , Environmental Health , Humans , Neoplasms/etiology , United States
5.
J Cell Sci ; 116(Pt 12): 2377-88, 2003 Jun 15.
Article in English | MEDLINE | ID: mdl-12766184

ABSTRACT

In order to translate the findings from basic cellular research into clinical applications, cell-based models need to recapitulate both the 3D organization and multicellular complexity of an organ but at the same time accommodate systematic experimental intervention. Here we describe a hierarchy of tractable 3D models that range in complexity from organotypic 3D cultures (both monotypic and multicellular) to animal-based recombinations in vivo. Implementation of these physiologically relevant models, illustrated here in the context of human epithelial tissues, has enabled the study of intrinsic cell regulation pathways and also has provided compelling evidence for the role of the stromal compartment in directing epithelial cell function and dysfunction. Furthermore the experimental accessibility afforded by these tissue-specific 3D models has implications for the design and development of cancer therapies.


Subject(s)
Epithelial Cells/physiology , Models, Biological , Organ Culture Techniques/methods , Organ Culture Techniques/trends , Signal Transduction/physiology , Viscera/physiology , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/physiopathology , Carcinoma/genetics , Carcinoma/metabolism , Carcinoma/physiopathology , Epithelial Cells/cytology , Humans , Mice , Models, Animal , Organ Specificity , Stromal Cells/cytology , Stromal Cells/physiology , Viscera/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...