Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38083322

ABSTRACT

In biomedical engineering, deep neural networks are commonly used for the diagnosis and assessment of diseases through the interpretation of medical images. The effectiveness of these networks relies heavily on the availability of annotated datasets for training. However, obtaining noise-free and consistent annotations from experts, such as pathologists, radiologists, and biologists, remains a significant challenge. One common task in clinical practice and biological imaging applications is instance segmentation. Though, there is currently a lack of methods and open-source tools for the automated inspection of biomedical instance segmentation datasets concerning noisy annotations. To address this issue, we propose a novel deep learning-based approach for inspecting noisy annotations and provide an accompanying software implementation, AI2Seg, to facilitate its use by domain experts. The performance of the proposed algorithm is demonstrated on the medical MoNuSeg dataset and the biological LIVECell dataset.


Subject(s)
Algorithms , Bioengineering , Humans , Biomedical Engineering , Health Personnel , Neural Networks, Computer
2.
J Integr Bioinform ; 19(4)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36017752

ABSTRACT

Deep learning models achieve high-quality results in image processing. However, to robustly optimize parameters of deep neural networks, large annotated datasets are needed. Image annotation is often performed manually by experts without a comprehensive tool for assistance which is time- consuming, burdensome, and not intuitive. Using the here presented modular Karlsruhe Image Data Annotation (KaIDA) tool, for the first time assisted annotation in various image processing tasks is possible to support users during this process. It aims to simplify annotation, increase user efficiency, enhance annotation quality, and provide additional useful annotation-related functionalities. KaIDA is available open-source at https://git.scc.kit.edu/sc1357/kaida.


Subject(s)
Deep Learning , Data Curation , Neural Networks, Computer , Image Processing, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...