Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
PLoS Genet ; 20(1): e1011115, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38227606

ABSTRACT

Timely regulation of carbon metabolic pathways is essential for cellular processes and to prevent futile cycling of intracellular metabolites. In Halobacterium salinarum, a hypersaline adapted archaeon, a sugar-sensing TrmB family protein controls gluconeogenesis and other biosynthetic pathways. Notably, Hbt. salinarum does not utilize carbohydrates for energy, uncommon among Haloarchaea. We characterized a TrmB-family transcriptional regulator in a saccharolytic generalist, Haloarcula hispanica, to investigate whether the targets and function of TrmB, or its regulon, is conserved in related species with distinct metabolic capabilities. In Har. hispanica, TrmB binds to 15 sites in the genome and induces the expression of genes primarily involved in gluconeogenesis and tryptophan biosynthesis. An important regulatory control point in Hbt. salinarum, activation of ppsA and repression of pykA, is absent in Har. hispanica. Contrary to its role in Hbt. salinarum and saccharolytic hyperthermophiles, TrmB does not act as a global regulator: it does not directly repress the expression of glycolytic enzymes, peripheral pathways such as cofactor biosynthesis, or catabolism of other carbon sources in Har. hispanica. Cumulatively, these findings suggest rewiring of the TrmB regulon alongside metabolic network evolution in Haloarchaea.


Subject(s)
Gluconeogenesis , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Gluconeogenesis/genetics , Archaea/genetics , Gene Expression Regulation, Archaeal , Carbohydrates , Carbon/metabolism
2.
Mol Microbiol ; 121(4): 742-766, 2024 04.
Article in English | MEDLINE | ID: mdl-38204420

ABSTRACT

Microbial cells must continually adapt their physiology in the face of changing environmental conditions. Archaea living in extreme conditions, such as saturated salinity, represent important examples of such resilience. The model salt-loving organism Haloferax volcanii exhibits remarkable plasticity in its morphology, biofilm formation, and motility in response to variations in nutrients and cell density. However, the mechanisms regulating these lifestyle transitions remain unclear. In prior research, we showed that the transcriptional regulator, TrmB, maintains the rod shape in the related species Halobacterium salinarum by activating the expression of enzyme-coding genes in the gluconeogenesis metabolic pathway. In Hbt. salinarum, TrmB-dependent production of glucose moieties is required for cell surface glycoprotein biogenesis. Here, we use a combination of genetics and quantitative phenotyping assays to demonstrate that TrmB is essential for growth under gluconeogenic conditions in Hfx. volcanii. The ∆trmB strain rapidly accumulated suppressor mutations in a gene encoding a novel transcriptional regulator, which we name trmB suppressor, or TbsP (a.k.a. "tablespoon"). TbsP is required for adhesion to abiotic surfaces (i.e., biofilm formation) and maintains wild-type cell morphology and motility. We use functional genomics and promoter fusion assays to characterize the regulons controlled by each of TrmB and TbsP, including joint regulation of the glucose-dependent transcription of gapII, which encodes an important gluconeogenic enzyme. We conclude that TrmB and TbsP coregulate gluconeogenesis, with downstream impacts on lifestyle transitions in response to nutrients in Hfx. volcanii.


Subject(s)
Archaeal Proteins , Haloferax volcanii , Haloferax volcanii/genetics , Glucose/metabolism , Metabolic Networks and Pathways , Membrane Glycoproteins/metabolism , Phenotype , Archaeal Proteins/metabolism
3.
Nucleic Acids Res ; 52(1): 125-140, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37994787

ABSTRACT

Maintaining the intracellular iron concentration within the homeostatic range is vital to meet cellular metabolic needs and reduce oxidative stress. Previous research revealed that the haloarchaeon Halobacterium salinarum encodes four diphtheria toxin repressor (DtxR) family transcription factors (TFs) that together regulate the iron response through an interconnected transcriptional regulatory network (TRN). However, the conservation of the TRN and the metal specificity of DtxR TFs remained poorly understood. Here we identified and characterized the TRN of Haloferax volcanii for comparison. Genetic analysis demonstrated that Hfx. volcanii relies on three DtxR transcriptional regulators (Idr, SirR, and TroR), with TroR as the primary regulator of iron homeostasis. Bioinformatics and molecular approaches revealed that TroR binds a conserved cis-regulatory motif located ∼100 nt upstream of the start codon of iron-related target genes. Transcriptomics analysis demonstrated that, under conditions of iron sufficiency, TroR repressed iron uptake and induced iron storage mechanisms. TroR repressed the expression of one other DtxR TF, Idr. This reduced DtxR TRN complexity relative to that of Hbt. salinarum appeared correlated with natural variations in iron availability. Based on these data, we hypothesize that variable environmental conditions such as iron availability appear to select for increasing TRN complexity.


Subject(s)
Bacterial Proteins , Gene Regulatory Networks , Haloferax volcanii , Iron , Bacterial Proteins/metabolism , Haloferax volcanii/genetics , Haloferax volcanii/metabolism , Homeostasis/genetics , Iron/metabolism , Metals , Transcription Factors/genetics , Transcription Factors/metabolism
4.
mBio ; : e0227223, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37966230

ABSTRACT

IMPORTANCE: Protein filaments play important roles in many biological processes. We discovered an actin homolog in halophilic archaea, which we call Salactin. Just like the filaments that segregate DNA in eukaryotes, Salactin grows out of the cell poles towards the middle, and then quickly depolymerizes, a behavior known as dynamic instability. Furthermore, we see that Salactin affects the distribution of DNA in daughter cells when cells are grown in low-phosphate media, suggesting Salactin filaments might be involved in segregating DNA when the cell has only a few copies of the chromosome.

5.
mBio ; 14(2): e0344922, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36779711

ABSTRACT

Histone proteins are found across diverse lineages of Archaea, many of which package DNA and form chromatin. However, previous research has led to the hypothesis that the histone-like proteins of high-salt-adapted archaea, or halophiles, function differently. The sole histone protein encoded by the model halophilic species Halobacterium salinarum, HpyA, is nonessential and expressed at levels too low to enable genome-wide DNA packaging. Instead, HpyA mediates the transcriptional response to salt stress. Here we compare the features of genome-wide binding of HpyA to those of HstA, the sole histone of another model halophile, Haloferax volcanii. hstA, like hpyA, is a nonessential gene. To better understand HpyA and HstA functions, protein-DNA binding data (chromatin immunoprecipitation sequencing [ChIP-seq]) of these halophilic histones are compared to publicly available ChIP-seq data from DNA binding proteins across all domains of life, including transcription factors (TFs), nucleoid-associated proteins (NAPs), and histones. These analyses demonstrate that HpyA and HstA bind the genome infrequently in discrete regions, which is similar to TFs but unlike NAPs, which bind a much larger genomic fraction. However, unlike TFs that typically bind in intergenic regions, HpyA and HstA binding sites are located in both coding and intergenic regions. The genome-wide dinucleotide periodicity known to facilitate histone binding was undetectable in the genomes of both species. Instead, TF-like and histone-like binding sequence preferences were detected for HstA and HpyA, respectively. Taken together, these data suggest that halophilic archaeal histones are unlikely to facilitate genome-wide chromatin formation and that their function defies categorization as a TF, NAP, or histone. IMPORTANCE Most cells in eukaryotic species-from yeast to humans-possess histone proteins that pack and unpack DNA in response to environmental cues. These essential proteins regulate genes necessary for important cellular processes, including development and stress protection. Although the histone fold domain originated in the domain of life Archaea, the function of archaeal histone-like proteins is not well understood relative to those of eukaryotes. We recently discovered that, unlike histones of eukaryotes, histones in hypersaline-adapted archaeal species do not package DNA and can act as transcription factors (TFs) to regulate stress response gene expression. However, the function of histones across species of hypersaline-adapted archaea still remains unclear. Here, we compare hypersaline histone function to a variety of DNA binding proteins across the tree of life, revealing histone-like behavior in some respects and specific transcriptional regulatory function in others.


Subject(s)
Archaeal Proteins , Histones , Humans , Histones/metabolism , DNA-Binding Proteins/metabolism , Archaea/genetics , Chromatin , Transcription Factors/genetics , Transcription Factors/metabolism , DNA/chemistry , DNA, Intergenic , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , DNA, Archaeal/genetics , DNA, Archaeal/chemistry
6.
Bio Protoc ; 12(22)2022 Nov 20.
Article in English | MEDLINE | ID: mdl-36532686

ABSTRACT

The study of haloarchaea provides an opportunity to expand understanding of the mechanisms used by extremophiles to thrive in and respond to harsh environments, including hypersaline and oxidative stress conditions. A common strategy used to investigate molecular mechanisms of stress response involves the deletion and/or site-directed mutagenesis of genes identified through omics studies followed by a comparison of the mutant and wild-type strains for phenotypic differences. The experimental methods used to monitor these differences must be controlled and reproducible. Current methods to examine recovery of halophilic archaea from extreme stress are complicated by extended incubation times, nutrients not typically encountered in the environment, and other related limitations. Here we describe a method for assessing the function of genes during hypochlorite stress in the halophilic archaeon Haloferax volcanii that overcomes these types of limitations. The method was found reproducible and informative in identifying genes needed for H. volcanii to recover from hypochlorite stress.

7.
mBio ; 13(4): e0063322, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35856564

ABSTRACT

Oxidative stress causes cellular damage, including DNA mutations, protein dysfunction, and loss of membrane integrity. Here, we discovered that a TrmB (transcription regulator of mal operon) family protein (Pfam PF01978) composed of a single winged-helix DNA binding domain (InterPro IPR002831) can function as thiol-based transcriptional regulator of oxidative stress response. Using the archaeon Haloferax volcanii as a model system, we demonstrate that the TrmB-like OxsR is important for recovery of cells from hypochlorite stress. OxsR is shown to bind specific regions of genomic DNA, particularly during hypochlorite stress. OxsR-bound intergenic regions were found proximal to oxidative stress operons, including genes associated with thiol relay and low molecular weight thiol biosynthesis. Further analysis of a subset of these sites revealed OxsR to function during hypochlorite stress as a transcriptional activator and repressor. OxsR was shown to require a conserved cysteine (C24) for function and to use a CG-rich motif upstream of conserved BRE/TATA box promoter elements for transcriptional activation. Protein modeling suggested the C24 is located at a homodimer interface formed by antiparallel α helices, and that oxidation of this cysteine would result in the formation of an intersubunit disulfide bond. This covalent linkage may promote stabilization of an OxsR homodimer with the enhanced DNA binding properties observed in the presence of hypochlorite stress. The phylogenetic distribution TrmB family proteins, like OxsR, that have a single winged-helix DNA binding domain and conserved cysteine residue suggests this type of redox signaling mechanism is widespread in Archaea. IMPORTANCE TrmB-like proteins, while not yet associated with redox stress, are found in bacteria and widespread in archaea. Here, we expand annotation of a large group of TrmB-like single winged-helix DNA binding domain proteins from diverse archaea to function as thiol-based transcriptional regulators of oxidative stress response. Using Haloferax volcanii as a model, we reveal that the TrmB-like OxsR functions during hypochlorite stress as a transcriptional activator and repressor of an extensive gene coexpression network associated with thiol relay and other related activities. A conserved cysteine residue of OxsR serves as the thiol-based sensor for this function and likely forms an intersubunit disulfide bond during hypochlorite stress that stabilizes a homodimeric configuration with enhanced DNA binding properties. A CG-rich DNA motif in the promoter region of a subset of sites identified to be OxsR-bound is required for regulation; however, not all sites have this motif, suggesting added complexity to the regulatory network.


Subject(s)
Archaeal Proteins , Transcription Factors , Archaea/genetics , Archaeal Proteins/genetics , Cysteine/metabolism , Disulfides , Hypochlorous Acid , Oxidation-Reduction , Oxidative Stress , Phylogeny , Sulfhydryl Compounds , Transcription Factors/metabolism
8.
Biomolecules ; 12(5)2022 05 10.
Article in English | MEDLINE | ID: mdl-35625610

ABSTRACT

Despite intense recent research interest in archaea, the scientific community has experienced a bottleneck in the study of genome-scale gene expression experiments by RNA-seq due to the lack of commercial and specifically designed rRNA depletion kits. The high rRNA:mRNA ratio (80-90%: ~10%) in prokaryotes hampers global transcriptomic analysis. Insufficient ribodepletion results in low sequence coverage of mRNA, and therefore, requires a substantially higher number of replicate samples and/or sequencing reads to achieve statistically reliable conclusions regarding the significance of differential gene expression between case and control samples. Here, we show that after the discontinuation of the previous version of RiboZero (Illumina, San Diego, CA, USA) that was useful in partially or completely depleting rRNA from archaea, archaeal transcriptomics studies have experienced a slowdown. To overcome this limitation, here, we analyze the efficiency for four different hybridization-based kits from three different commercial suppliers, each with two sets of sequence-specific probes to remove rRNA from four different species of halophilic archaea. We conclude that the key for transcriptomic success with the currently available tools is the probe-specificity for the rRNA sequence hybridization. With this paper, we provide insights into the archaeal community for selecting certain reagents and strategies over others depending on the archaeal species of interest. These methods yield improved RNA-seq sensitivity and enhanced detection of low abundance transcripts.


Subject(s)
Archaea , RNA, Ribosomal , Archaea/genetics , Archaea/metabolism , RNA, Messenger/genetics , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA-Seq , Sequence Analysis, RNA/methods
10.
Nucleic Acids Res ; 49(22): 12732-12743, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34883507

ABSTRACT

Histones, ubiquitous in eukaryotes as DNA-packing proteins, find their evolutionary origins in archaea. Unlike the characterized histone proteins of a number of methanogenic and themophilic archaea, previous research indicated that HpyA, the sole histone encoded in the model halophile Halobacterium salinarum, is not involved in DNA packaging. Instead, it was found to have widespread but subtle effects on gene expression and to maintain wild type cell morphology. However, the precise function of halophilic histone-like proteins remain unclear. Here we use quantitative phenotyping, genetics, and functional genomics to investigate HpyA function. These experiments revealed that HpyA is important for growth and rod-shaped morphology in reduced salinity. HpyA preferentially binds DNA at discrete genomic sites under low salt to regulate expression of ion uptake, particularly iron. HpyA also globally but indirectly activates other ion uptake and nucleotide biosynthesis pathways in a salt-dependent manner. Taken together, these results demonstrate an alternative function for an archaeal histone-like protein as a transcriptional regulator, with its function tuned to the physiological stressors of the hypersaline environment.


Subject(s)
Archaeal Proteins/physiology , Gene Expression Regulation, Archaeal , Halobacterium salinarum/genetics , Histones/physiology , Salt Stress/genetics , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Halobacterium salinarum/cytology , Halobacterium salinarum/growth & development , Halobacterium salinarum/metabolism , Histones/genetics , Histones/metabolism , Ion Transport
11.
PLoS Comput Biol ; 16(10): e1008366, 2020 10.
Article in English | MEDLINE | ID: mdl-33104703

ABSTRACT

Substantive changes in gene expression, metabolism, and the proteome are manifested in overall changes in microbial population growth. Quantifying how microbes grow is therefore fundamental to areas such as genetics, bioengineering, and food safety. Traditional parametric growth curve models capture the population growth behavior through a set of summarizing parameters. However, estimation of these parameters from data is confounded by random effects such as experimental variability, batch effects or differences in experimental material. A systematic statistical method to identify and correct for such confounding effects in population growth data is not currently available. Further, our previous work has demonstrated that parametric models are insufficient to explain and predict microbial response under non-standard growth conditions. Here we develop a hierarchical Bayesian non-parametric model of population growth that identifies the latent growth behavior and response to perturbation, while simultaneously correcting for random effects in the data. This model enables more accurate estimates of the biological effect of interest, while better accounting for the uncertainty due to technical variation. Additionally, modeling hierarchical variation provides estimates of the relative impact of various confounding effects on measured population growth.


Subject(s)
Bacteria/growth & development , Models, Biological , Systems Biology/methods , Bacteria/metabolism , Bayes Theorem , Statistics, Nonparametric
12.
mBio ; 11(4)2020 08 11.
Article in English | MEDLINE | ID: mdl-32788376

ABSTRACT

Precise control of the cell cycle is central to the physiology of all cells. In prior work we demonstrated that archaeal cells maintain a constant size; however, the regulatory mechanisms underlying the cell cycle remain unexplored in this domain of life. Here, we use genetics, functional genomics, and quantitative imaging to identify and characterize the novel CdrSL gene regulatory network in a model species of archaea. We demonstrate the central role of these ribbon-helix-helix family transcription factors in the regulation of cell division through specific transcriptional control of the gene encoding FtsZ2, a putative tubulin homolog. Using time-lapse fluorescence microscopy in live cells cultivated in microfluidics devices, we further demonstrate that FtsZ2 is required for cell division but not elongation. The cdrS-ftsZ2 locus is highly conserved throughout the archaeal domain, and the central function of CdrS in regulating cell division is conserved across hypersaline adapted archaea. We propose that the CdrSL-FtsZ2 transcriptional network coordinates cell division timing with cell growth in archaea.IMPORTANCE Healthy cell growth and division are critical for individual organism survival and species long-term viability. However, it remains unknown how cells of the domain Archaea maintain a healthy cell cycle. Understanding the archaeal cell cycle is of paramount evolutionary importance given that an archaeal cell was the host of the endosymbiotic event that gave rise to eukaryotes. Here, we identify and characterize novel molecular players needed for regulating cell division in archaea. These molecules dictate the timing of cell septation but are dispensable for growth between divisions. Timing is accomplished through transcriptional control of the cell division ring. Our results shed light on mechanisms underlying the archaeal cell cycle, which has thus far remained elusive.


Subject(s)
Archaea/genetics , Archaeal Proteins/genetics , Cell Division/genetics , Gene Expression Regulation, Archaeal , Transcription Factors/genetics , Archaea/growth & development , Protein Domains , Transcription, Genetic
13.
Cell ; 180(4): 818-818.e1, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32084345

ABSTRACT

Extremophiles are remarkable examples of life's resilience, thriving in hot springs at boiling temperatures, in brine lakes saturated with salt, and in the driest deserts. We review the biogeography, currently known limits of life, and molecular adaptations to extremes. See the online interactive map for additional detail on biogeography, environmental microbiology, and exemplary species. To view this SnapShot, open or download the PDF.


Subject(s)
Adaptation, Physiological , Archaea/physiology , Bacterial Physiological Phenomena , Extreme Environments , Phylogeography
14.
Int J Mol Sci ; 20(19)2019 Sep 26.
Article in English | MEDLINE | ID: mdl-31561502

ABSTRACT

Haloferax volcanii, a well-developed model archaeon for genomic, transcriptomic, and proteomic analyses, can grow on a defined medium of abundant and intermediate levels of fixed nitrogen. Here we report a global profiling of gene expression of H. volcanii grown on ammonium as an abundant source of fixed nitrogen compared to l-alanine, the latter of which exemplifies an intermediate source of nitrogen that can be obtained from dead cells in natural habitats. By comparing the two growth conditions, 30 genes were found to be differentially expressed, including 16 genes associated with amino acid metabolism and transport. The gene expression profiles contributed to mapping ammonium and l-alanine usage with respect to transporters and metabolic pathways. In addition, conserved DNA motifs were identified in the putative promoter regions and transcription factors were found to be in synteny with the differentially expressed genes, leading us to propose regulons of transcriptionally co-regulated operons. This study provides insight to how H. volcanii responds to and utilizes intermediate vs. abundant sources of fixed nitrogen for growth, with implications for conserved functions in related halophilic archaea.


Subject(s)
Gene Expression Regulation, Archaeal , Haloferax volcanii/genetics , Haloferax volcanii/metabolism , Nitrogen Fixation , Nitrogen/metabolism , Amino Acids/metabolism , Computational Biology/methods , Gene Expression Profiling , Genome-Wide Association Study , Metabolic Networks and Pathways , Transcriptome
15.
J Mol Biol ; 431(20): 4147-4166, 2019 09 20.
Article in English | MEDLINE | ID: mdl-31437442

ABSTRACT

The environmental stress response (ESR), a global transcriptional program originally identified in yeast, is characterized by a rapid and transient transcriptional response composed of large, oppositely regulated gene clusters. Genes induced during the ESR encode core components of stress tolerance, macromolecular repair, and maintenance of homeostasis. In this review, we investigate the possibility for conservation of the ESR across the eukaryotic and archaeal domains of life. We first re-analyze existing transcriptomics data sets to illustrate that a similar transcriptional response is identifiable in Halobacterium salinarum, an archaeal model organism. To substantiate the archaeal ESR, we calculated gene-by-gene correlations, gene function enrichment, and comparison of temporal dynamics. We note reported examples of variation in the ESR across fungi, then synthesize high-level trends present in expression data of other archaeal species. In particular, we emphasize the need for additional high-throughput time series expression data to further characterize stress-responsive transcriptional programs in the Archaea. Together, this review explores an open question regarding features of global transcriptional stress response programs shared across domains of life.


Subject(s)
Adaptation, Physiological , Gene Expression Regulation, Archaeal , Halobacterium salinarum/genetics , Stress, Physiological , Transcription, Genetic , Fungi/genetics , Gene Expression Profiling
16.
Front Microbiol ; 10: 1367, 2019.
Article in English | MEDLINE | ID: mdl-31275283

ABSTRACT

Halobacterium salinarum are halophilic archaea that display directional swimming in response to various environmental signals, including light, chemicals and oxygen. In Hbt. salinarum, the building blocks (archaellins) of the archaeal swimming apparatus (the archaellum) are N-glycosylated. However, the physiological importance of archaellin N-glycosylation remains unclear. Here, a tetrasaccharide comprising a hexose and three hexuronic acids decorating the five archaellins was characterized by mass spectrometry. Such analysis failed to detect sulfation of the hexuronic acids, in contrast to earlier reports. To better understand the physiological significance of Hbt. salinarum archaellin N-glycosylation, a strain deleted of aglB, encoding the archaeal oligosaccharyltransferase, was generated. In this ΔaglB strain, archaella were not detected and only low levels of archaellins were released into the medium, in contrast to what occurs with the parent strain. Mass spectrometry analysis of the archaellins in ΔaglB cultures did not detect N-glycosylation. ΔaglB cells also showed a slight growth defect and were impaired for motility. Quantitative real-time PCR analysis revealed dramatically reduced transcript levels of archaellin-encoding genes in the mutant strain, suggesting that N-glycosylation is important for archaellin transcription, with downstream effects on archaellum assembly and function. Control of AglB-dependent post-translational modification of archaellins could thus reflect a previously unrecognized route for regulating Hbt. salinarum motility.

17.
Microb Genom ; 4(9)2018 09.
Article in English | MEDLINE | ID: mdl-30142055

ABSTRACT

Genomic instability, although frequently deleterious, is also an important mechanism for microbial adaptation to environmental change. Although widely studied in bacteria, in archaea the effect of genomic instability on organism phenotypes and fitness remains unclear. Here we use DNA segmentation methods to detect and quantify genome-wide copy number variation (CNV) in large compendia of high-throughput datasets in a model archaeal species, Halobacterium salinarum. CNV hotspots were identified throughout the genome. Some hotspots were strongly associated with changes in gene expression, suggesting a mechanism for phenotypic innovation. In contrast, CNV hotspots in other genomic loci left expression unchanged, suggesting buffering of certain phenotypes. The correspondence of CNVs with gene expression was validated with strain- and condition-matched transcriptomics and DNA quantification experiments at specific loci. Significant correlation of CNV hotspot locations with the positions of known insertion sequence (IS) elements suggested a mechanism for generating genomic instability. Given the efficient recombination capabilities in H. salinarum despite stability at the single nucleotide level, these results suggest that genomic plasticity mediated by IS element activity can provide a source of phenotypic innovation in extreme environments.


Subject(s)
DNA Copy Number Variations , Halobacterium salinarum/genetics , Transcriptome , Chromosome Breakpoints , Chromosome Deletion , Chromosomes, Archaeal , Gene Expression Profiling , Gene Expression Regulation , Halobacterium salinarum/metabolism , Interspersed Repetitive Sequences , Oligonucleotide Array Sequence Analysis , Plasmids/genetics , Workflow
18.
J Bacteriol ; 200(17)2018 09 01.
Article in English | MEDLINE | ID: mdl-29914986

ABSTRACT

DeoR-type helix-turn-helix (HTH) domain proteins are transcriptional regulators of sugar and nucleoside metabolism in diverse bacteria and also occur in select archaea. In the model archaeon Haloferax volcanii, previous work implicated GlpR, a DeoR-type transcriptional regulator, in the transcriptional repression of glpR and the gene encoding the fructose-specific phosphofructokinase (pfkB) during growth on glycerol. However, the global regulon governed by GlpR remained unclear. Here, we compared transcriptomes of wild-type and ΔglpR mutant strains grown on glycerol and glucose to detect significant transcript level differences for nearly 50 new genes regulated by GlpR. By coupling computational prediction of GlpR binding sequences with in vivo and in vitro DNA binding experiments, we determined that GlpR directly controls genes encoding enzymes involved in fructose degradation, including fructose bisphosphate aldolase, a central control point in glycolysis. GlpR also directly controls other transcription factors. In contrast, other metabolic pathways appear to be under the indirect influence of GlpR. In vitro experiments demonstrated that GlpR purifies to function as a tetramer that binds the effector molecule fructose-1-phosphate (F1P). These results suggest that H. volcanii GlpR functions as a direct negative regulator of fructose degradation during growth on carbon sources other than fructose, such as glucose and glycerol, and that GlpR bears striking functional similarity to bacterial DeoR-type regulators.IMPORTANCE Many archaea are extremophiles, able to thrive in habitats of extreme salinity, pH and temperature. These biological properties are ideal for applications in biotechnology. However, limited knowledge of archaeal metabolism is a bottleneck that prevents the broad use of archaea as microbial factories for industrial products. Here, we characterize how sugar uptake and use are regulated in a species that lives in high salinity. We demonstrate that a key sugar regulatory protein in this archaeal species functions using molecular mechanisms conserved with distantly related bacterial species.


Subject(s)
Archaeal Proteins/genetics , Fructose/metabolism , Gene Expression Regulation, Archaeal , Haloferax volcanii/genetics , Repressor Proteins/genetics , Archaeal Proteins/metabolism , Gene Expression Regulation, Enzymologic , Glucose/metabolism , Glycerol/metabolism , Haloferax volcanii/enzymology , Metabolic Networks and Pathways , Mutation , Regulon , Repressor Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic
19.
PLoS Comput Biol ; 14(1): e1005896, 2018 01.
Article in English | MEDLINE | ID: mdl-29337990

ABSTRACT

Transcriptome-wide time series expression profiling is used to characterize the cellular response to environmental perturbations. The first step to analyzing transcriptional response data is often to cluster genes with similar responses. Here, we present a nonparametric model-based method, Dirichlet process Gaussian process mixture model (DPGP), which jointly models data clusters with a Dirichlet process and temporal dependencies with Gaussian processes. We demonstrate the accuracy of DPGP in comparison to state-of-the-art approaches using hundreds of simulated data sets. To further test our method, we apply DPGP to published microarray data from a microbial model organism exposed to stress and to novel RNA-seq data from a human cell line exposed to the glucocorticoid dexamethasone. We validate our clusters by examining local transcription factor binding and histone modifications. Our results demonstrate that jointly modeling cluster number and temporal dependencies can reveal shared regulatory mechanisms. DPGP software is freely available online at https://github.com/PrincetonUniversity/DP_GP_cluster.


Subject(s)
Cluster Analysis , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , A549 Cells , Algorithms , Cell Line, Tumor , Computational Biology , Computer Simulation , Dexamethasone/chemistry , Gene Expression Profiling , Glucocorticoids/chemistry , Histones/chemistry , Humans , Hydrogen Bonding , Hydrogen Peroxide/chemistry , Lung Neoplasms/drug therapy , Models, Biological , Normal Distribution , Oligonucleotide Array Sequence Analysis , Sequence Analysis, RNA , Time Factors , Transcription Factors/chemistry
20.
Emerg Top Life Sci ; 2(4): 659-669, 2018 Dec 14.
Article in English | MEDLINE | ID: mdl-33525832

ABSTRACT

Gene regulation is intimately connected with metabolism, enabling the appropriate timing and tuning of biochemical pathways to substrate availability. In microorganisms, such as archaea and bacteria, transcription factors (TFs) often directly sense external cues such as nutrient substrates, metabolic intermediates, or redox status to regulate gene expression. Intense recent interest has characterized the functions of a large number of such regulatory TFs in archaea, which regulate a diverse array of unique archaeal metabolic capabilities. However, it remains unclear how the co-ordinated activity of the interconnected metabolic and transcription networks produces the dynamic flexibility so frequently observed in archaeal cells as they respond to energy limitation and intermittent substrate availability. In this review, we communicate the current state of the art regarding these archaeal networks and their dynamic properties. We compare the topology of these archaeal networks to those known for bacteria to highlight conserved and unique aspects. We present a new computational model for an exemplar archaeal network, aiming to lay the groundwork toward understanding general principles that unify the dynamic function of integrated metabolic-transcription networks across archaea and bacteria.

SELECTION OF CITATIONS
SEARCH DETAIL
...