Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Neural Syst Rehabil Eng ; 25(8): 1343-1352, 2017 08.
Article in English | MEDLINE | ID: mdl-27845663

ABSTRACT

Existing implantable stimulators use powering approaches that result in stiff and bulky systems or result in systems incapable of producing the current magnitudes required for neuromuscular stimulation. This hampers their use in neuroprostheses for paralysis. We previously demonstrated an electrical stimulation method based on electronic rectification of high frequency (HF) current bursts. The implants act as rectifiers of HF current that flows through the tissues by galvanic coupling, transforming this current into low frequency current capable of performing neuromuscular stimulation. Here we developed 2 mm thick, semi-rigid, injectable and addressable stimulators made of off-the-shelf components and based on this method. The devices were tested in vitro to illustrate how they are powered by galvanic coupling. In addition they were tried in an animal model to demonstrate their ability to perform controlled electrical stimulation. The implants were deployed by injection into two antagonist muscles of an anesthetized rabbit and were addressed resulting in independent isometric contractions. Low frequency currents of 2 mA were delivered by the implants. The HF currents are safe in terms of unwanted electrostimulation and tissue heating according to standards. This indicates that the proposed electrical stimulation method will allow unprecedented levels of miniaturization for neuroprostheses.

SELECTION OF CITATIONS
SEARCH DETAIL
...