Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 18(2): 1175-1179, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29381364

ABSTRACT

Generating entangled graph states of qubits requires high entanglement rates with efficient detection of multiple indistinguishable photons from separate qubits. Integrating defect-based qubits into photonic devices results in an enhanced photon collection efficiency, however, typically at the cost of a reduced defect emission energy homogeneity. Here, we demonstrate that the reduction in defect homogeneity in an integrated device can be partially offset by electric field tuning. Using photonic device-coupled implanted nitrogen vacancy (NV) centers in a GaP-on-diamond platform, we demonstrate large field-dependent tuning ranges and partial stabilization of defect emission energies. These results address some of the challenges of chip-scale entanglement generation.

2.
Opt Express ; 26(26): 33687-33699, 2018 Dec 24.
Article in English | MEDLINE | ID: mdl-30650802

ABSTRACT

Second harmonic conversion from 1550 nm to 775 nm with an efficiency of 400% W-1 is demonstrated in a gallium phosphide (GaP) on oxide integrated photonic platform. The platform consists of doubly-resonant, phase-matched ring resonators with quality factors Q ∼ 104, low mode volumes V ∼ 30(λ/n)3, and high nonlinear mode overlaps. Measurements and simulations indicate that conversion efficiencies can be increased by a factor of 20 by improving the waveguide-cavity coupling to achieve critical coupling in current devices.

3.
Sci Adv ; 3(5): e1603113, 2017 May.
Article in English | MEDLINE | ID: mdl-28580423

ABSTRACT

The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. We create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI3 and a monolayer of WSe2. We observe unprecedented control of the spin and valley pseudospin in WSe2, where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe2 valley splitting and polarization via flipping of the CrI3 magnetization. The WSe2 photoluminescence intensity strongly depends on the relative alignment between photoexcited spins in WSe2 and the CrI3 magnetization, because of ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure.

4.
Nature ; 546(7657): 270-273, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28593970

ABSTRACT

Since the discovery of graphene, the family of two-dimensional materials has grown, displaying a broad range of electronic properties. Recent additions include semiconductors with spin-valley coupling, Ising superconductors that can be tuned into a quantum metal, possible Mott insulators with tunable charge-density waves, and topological semimetals with edge transport. However, no two-dimensional crystal with intrinsic magnetism has yet been discovered; such a crystal would be useful in many technologies from sensing to data storage. Theoretically, magnetic order is prohibited in the two-dimensional isotropic Heisenberg model at finite temperatures by the Mermin-Wagner theorem. Magnetic anisotropy removes this restriction, however, and enables, for instance, the occurrence of two-dimensional Ising ferromagnetism. Here we use magneto-optical Kerr effect microscopy to demonstrate that monolayer chromium triiodide (CrI3) is an Ising ferromagnet with out-of-plane spin orientation. Its Curie temperature of 45 kelvin is only slightly lower than that of the bulk crystal, 61 kelvin, which is consistent with a weak interlayer coupling. Moreover, our studies suggest a layer-dependent magnetic phase, highlighting thickness-dependent physical properties typical of van der Waals crystals. Remarkably, bilayer CrI3 displays suppressed magnetization with a metamagnetic effect, whereas in trilayer CrI3 the interlayer ferromagnetism observed in the bulk crystal is restored. This work creates opportunities for studying magnetism by harnessing the unusual features of atomically thin materials, such as electrical control for realizing magnetoelectronics, and van der Waals engineering to produce interface phenomena.

5.
Nano Lett ; 12(3): 1165-9, 2012 Mar 14.
Article in English | MEDLINE | ID: mdl-22380722

ABSTRACT

Graphene's high mobility and two-dimensional nature make it an attractive material for field-effect transistors. Previous efforts in this area have used bulk gate dielectric materials such as SiO(2) or HfO(2). In contrast, we have studied the use of an ultrathin layered material, graphene's insulating analogue, graphite oxide. We have fabricated transistors comprising single or bilayer graphene channels, graphite oxide gate insulators, and metal top-gates. The graphite oxide layers show relatively minimal leakage at room temperature. The breakdown electric field of graphite oxide was found to be comparable to SiO(2), typically ~1-3 × 10(8) V/m, while its dielectric constant is slightly higher, κ ≈ 4.3.


Subject(s)
Graphite/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Transistors, Electronic , Equipment Design , Equipment Failure Analysis , Oxides/chemistry , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...