Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 39(1): 153-9, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22225284

ABSTRACT

PURPOSE: X-ray scatter is a major detriment to image quality in cone-beam CT (CBCT). Existing geometries exhibit strong differences in scatter susceptibility with more compact geometries, e.g., dental or musculoskeletal, benefiting from antiscatter grids, whereas in more extended geometries, e.g., IGRT, grid use carries tradeoffs in image quality per unit dose. This work assesses the tradeoffs in dose and image quality for grids applied in the context of low-dose CBCT on a mobile C-arm for image-guided surgery. METHODS: Studies were performed on a mobile C-arm equipped with a flat-panel detector for high-quality CBCT. Antiscatter grids of grid ratio (GR) 6:1-12:1, 40 lp∕cm, were tested in "body" surgery, i.e., spine, using protocols for bone and soft-tissue visibility in the thoracic and abdominal spine. Studies focused on grid orientation, CT number accuracy, image noise, and contrast-to-noise ratio (CNR) in quantitative phantoms at constant dose. RESULTS: There was no effect of grid orientation on possible gridline artifacts, given accurate angle-dependent gain calibration. Incorrect calibration was found to result in gridline shadows in the projection data that imparted high-frequency artifacts in 3D reconstructions. Increasing GR reduced errors in CT number from 31%, thorax, and 37%, abdomen, for gridless operation to 2% and 10%, respectively, with a 12:1 grid, while image noise increased by up to 70%. The CNR of high-contrast objects was largely unaffected by grids, but low-contrast soft-tissues suffered reduction in CNR, 2%-65%, across the investigated GR at constant dose. CONCLUSIONS: While grids improved CT number accuracy, soft-tissue CNR was reduced due to attenuation of primary radiation. CNR could be restored by increasing dose by factors of ~1.6-2.5 depending on GR, e.g., increase from 4.6 mGy for the thorax and 12.5 mGy for the abdomen without antiscatter grids to approximately 12 mGy and 30 mGy, respectively, with a high-GR grid. However, increasing the dose poses a significant impediment to repeat intraoperative CBCT and can cause the cumulative intraoperative dose to exceed that of a single diagnostic CT scan. This places the mobile C-arm in the category of extended CBCT geometries with sufficient air gap for which the tradeoffs between CNR and dose typically do not favor incorporation of an antiscatter grid.


Subject(s)
Artifacts , Cone-Beam Computed Tomography/instrumentation , Image Enhancement/instrumentation , X-Ray Intensifying Screens , Equipment Design , Equipment Failure Analysis , Phantoms, Imaging , Radiation Dosage , Reproducibility of Results , Scattering, Radiation , Sensitivity and Specificity , X-Rays
2.
Med Phys ; 38(8): 4563-74, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21928628

ABSTRACT

PURPOSE: A flat-panel detector based mobile isocentric C-arm for cone-beam CT (CBCT) has been developed to allow intraoperative 3D imaging with sub-millimeter spatial resolution and soft-tissue visibility. Image quality and radiation dose were evaluated in spinal surgery, commonly relying on lower-performance image intensifier based mobile C-arms. Scan protocols were developed for task-specific imaging at minimum dose, in-room exposure was evaluated, and integration of the imaging system with a surgical guidance system was demonstrated in preclinical studies of minimally invasive spine surgery. METHODS: Radiation dose was assessed as a function of kilovolt (peak) (80-120 kVp) and milliampere second using thoracic and lumbar spine dosimetry phantoms. In-room radiation exposure was measured throughout the operating room for various CBCT scan protocols. Image quality was assessed using tissue-equivalent inserts in chest and abdomen phantoms to evaluate bone and soft-tissue contrast-to-noise ratio as a function of dose, and task-specific protocols (i.e., visualization of bone or soft-tissues) were defined. Results were applied in preclinical studies using a cadaveric torso simulating minimally invasive, transpedicular surgery. RESULTS: Task-specific CBCT protocols identified include: thoracic bone visualization (100 kVp; 60 mAs; 1.8 mGy); lumbar bone visualization (100 kVp; 130 mAs; 3.2 mGy); thoracic soft-tissue visualization (100 kVp; 230 mAs; 4.3 mGy); and lumbar soft-tissue visualization (120 kVp; 460 mAs; 10.6 mGy)--each at (0.3 x 0.3 x 0.9 mm3) voxel size. Alternative lower-dose, lower-resolution soft-tissue visualization protocols were identified (100 kVp; 230 mAs; 5.1 mGy) for the lumbar region at (0.3 x 0.3 x 1.5 mm3) voxel size. Half-scan orbit of the C-arm (x-ray tube traversing under the table) was dosimetrically advantageous (prepatient attenuation) with a nonuniform dose distribution (-2 x higher at the entrance side than at isocenter, and -3-4 lower at the exit side). The in-room dose (microsievert) per unit scan dose (milligray) ranged from -21 microSv/mGy on average at tableside to -0.1 microSv/mGy at 2.0 m distance to isocenter. All protocols involve surgical staff stepping behind a shield wall for each CBCT scan, therefore imparting -zero dose to staff. Protocol implementation in preclinical cadaveric studies demonstrate integration of the C-arm with a navigation system for spine surgery guidance-specifically, minimally invasive vertebroplasty in which the system provided accurate guidance and visualization of needle placement and bone cement distribution. Cumulative dose including multiple intraoperative scans was -11.5 mGy for CBCT-guided thoracic vertebroplasty and -23.2 mGy for lumbar vertebroplasty, with dose to staff at tableside reduced to -1 min of fluoroscopy time (-4(0-60 microSv), compared to 5-11 min for the conventional approach. CONCLUSIONS: Intraoperative CBCT using a high-performance mobile C-arm prototype demonstrates image quality suitable to guidance of spine surgery, with task-specific protocols providing an important basis for minimizing radiation dose, while maintaining image quality sufficient for surgical guidance. Images demonstrate a significant advance in spatial resolution and soft-tissue visibility, and CBCT guidance offers the potential to reduce fluoroscopy reliance, reducing cumulative dose to patient and staff. Integration with a surgical guidance system demonstrates precise tracking and visualization in up-to-date images (alleviating reliance on preoperative images only), including detection of errors or suboptimal surgical outcomes in the operating room.


Subject(s)
Cone-Beam Computed Tomography/methods , Imaging, Three-Dimensional/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Spine/diagnostic imaging , Spine/surgery , Cadaver , Cone-Beam Computed Tomography/statistics & numerical data , Humans , Imaging, Three-Dimensional/statistics & numerical data , Intraoperative Period , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Minimally Invasive Surgical Procedures , Phantoms, Imaging , Radiation Dosage , Radiography, Interventional , Radiometry , Thoracic Vertebrae/diagnostic imaging , Thoracic Vertebrae/surgery , Vertebroplasty
3.
Med Phys ; 34(9): 3649-64, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17926969

ABSTRACT

The continuing research and further development in flat panel detector technology have led to its integration into more and more medical x-ray systems for two-dimensional (2D) and three-dimensional (3D) imaging, such as fixed or mobile C arms. Besides the obvious advantages of flat panel detectors, like the slim design and the resulting optimum accessibility to the patient, their success is primarily a product of the image quality that can be achieved. The benefits in the physical and performance-related features as opposed to conventional image intensifier systems, (e.g., distortion-free reproduction of imaging information or almost linear signal response over a large dynamic range) can be fully exploited, however, only if the raw detector images are correctly calibrated and postprocessed. Previous procedures for processing raw data contain idealizations that, in the real world, lead to artifacts or losses in image quality. Thus, for example, temperature dependencies or changes in beam geometry, as can occur with mobile C arm systems, have not been taken into account up to this time. Additionally, adverse characteristics such as image lag or aging effects have to be compensated to attain the best possible image quality. In this article a procedure is presented that takes into account the important dependencies of the individual pixel sensitivity of flat panel detectors used in 2D or 3D imaging and simultaneously minimizes the work required for an extensive recalibration. It is suitable for conventional detectors with only one gain mode as well as for the detectors specially developed for 3D imaging with dual gain read-out technology.


Subject(s)
Models, Theoretical , Radiographic Image Interpretation, Computer-Assisted , Tomography, X-Ray Computed/methods , Calibration , Phantoms, Imaging , Tomography, X-Ray Computed/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...