Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chembiochem ; 23(11): e202100605, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35040547

ABSTRACT

The activation of molecular oxygen for the highly selective functionalization and repair of DNA and RNA nucleobases is achieved by α-ketoglutarate (α-KG)/iron-dependent dioxygenases. Of special interest are the human homologues AlkBH of Escherichia coli EcAlkB and ten-eleven translocation (TET) enzymes. These enzymes are involved in demethylation or dealkylation of DNA and RNA, although additional physiological functions are continuously being found. Given their importance, studying enzyme-substrate interactions, turnover and kinetic parameters is pivotal for the understanding of the mode of action of these enzymes. Diverse analytical methods, including X-ray crystallography, UV/Vis absorption, electron paramagnetic resonance (EPR), circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy have been employed to study the changes in the active site and the overall enzyme structure upon substrate, cofactor, and inhibitor addition. Several methods are now available to assess the activity of these enzymes. By discussing limitations and possibilities of these techniques for EcAlkB, AlkBH and TET we aim to give a comprehensive synopsis from a bioinorganic point-of-view, addressing researchers from different disciplines working in the highly interdisciplinary and rapidly evolving field of epigenetic processes and DNA/RNA repair and modification.


Subject(s)
Dioxygenases , Nucleic Acids , DNA/chemistry , Dioxygenases/chemistry , Escherichia coli/genetics , Humans , Ketoglutaric Acids , RNA , Spectrum Analysis
2.
Angew Chem Int Ed Engl ; 60(39): 21457-21463, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34181314

ABSTRACT

The epigenetic marker 5-methyl-2'-deoxycytidine (5mdC) is the most prevalent modification to DNA. It is removed inter alia via an active demethylation pathway: oxidation by Ten-Eleven Translocation 5-methyl cytosine dioxygenase (TET) and subsequent removal via base excision repair or direct demodification. Recently, we have shown that the synthetic iron(IV)-oxo complex [FeIV (O)(Py5 Me2 H)]2+ (1) can serve as a biomimetic model for TET by oxidizing the nucleobase 5-methyl cytosine (5mC) to its natural metabolites. In this work, we demonstrate that nucleosides and even short oligonucleotide strands can also serve as substrates, using a range of HPLC and MS techniques. We found that the 5-position of 5mC is oxidized preferably by 1, with side reactions occurring only at the strand ends of the used oligonucleotides. A detailed study of the reactivity of 1 towards nucleosides confirms our results; that oxidation of the anomeric center (1') is the most common side reaction.


Subject(s)
5-Methylcytosine/metabolism , Biomimetic Materials/metabolism , Dioxygenases/metabolism , Iron Compounds/metabolism , 5-Methylcytosine/chemistry , Biomimetic Materials/chemistry , Dioxygenases/chemistry , Iron Compounds/chemistry , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...