Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Control Release ; 349: 992-1008, 2022 09.
Article in English | MEDLINE | ID: mdl-35921913

ABSTRACT

Since the introduction of percutaneous coronary intervention (PCI) for the treatment of obstructive coronary artery disease (CAD), patient outcomes have progressively improved. Drug eluting stents (DES) that employ anti-proliferative drugs to limit excess tissue growth following stent deployment have proved revolutionary. However, restenosis and a need for repeat revascularisation still occurs after DES use. Over the last few years, computational models have emerged that detail restenosis following the deployment of a bare metal stent (BMS), focusing primarily on contributions from mechanics and fluid dynamics. However, none of the existing models adequately account for spatiotemporal delivery of drug and the influence of this on the cellular processes that drive restenosis. In an attempt to fill this void, a novel continuum restenosis model coupled with spatiotemporal drug delivery is presented. Our results indicate that the severity and time-course of restenosis is critically dependent on the drug delivery strategy. Specifically, we uncover an intricate interplay between initial drug loading, drug release rate and restenosis, indicating that it is not sufficient to simply ramp-up the drug dose or prolong the time course of drug release to improve stent efficacy. Our model also shows that the level of stent over-expansion and stent design features, such as inter-strut spacing and strut thickness, influence restenosis development, in agreement with trends observed in experimental and clinical studies. Moreover, other critical aspects of the model which dictate restenosis, including the drug binding site density are investigated, where comparisons are made between approaches which assume this to be either constant or proportional to the number of smooth muscle cells (SMCs). Taken together, our results highlight the necessity of incorporating these aspects of drug delivery in the pursuit of optimal DES design.


Subject(s)
Coronary Restenosis , Drug-Eluting Stents , Percutaneous Coronary Intervention , Coronary Restenosis/drug therapy , Humans , Metals , Prosthesis Design , Stents , Treatment Outcome
2.
Int J Pharm ; 620: 121742, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35427751

ABSTRACT

The most common treatment for obstructive coronary artery disease (CAD) is the implantation of a permanent drug-eluting stent (DES). Not only has this permanency been associated with delayed healing of the artery, but it also poses challenges when treating subsequent re-narrowing due to in-stent restenosis (ISR). Drug-coated balloons (DCBs) provide a potential solution to each of these issues. While their use has been primarily limited to treating ISR, in recent years, DCBs have emerged as an attractive potential alternative to DESs for the treatment of certain de novo lesions. However, there remain a number of concerns related to the safety and efficacy of these devices. Firstly, unlike DESs, DCBs necessitate a very short drug delivery window, favouring a higher drug loading. Secondly, while the majority of coronary DCBs in Europe are coated with paclitaxel, the potential mortality signal raised with paclitaxel DCBs in peripheral interventions has shifted efforts towards the development of limus-eluting balloons. The purpose of this paper is to provide a computational model that allows drug delivery from DCBs and DESs to be investigated and compared. We present a comprehensive computational framework that employs a 2D-axisymmetric geometry, incorporates two nonlinear phases of drug binding (specific and non-specific) and includes the influence of diffusion and advection, within a multilayer arterial wall. We utilise this framework to (i) simulate drug delivery from different types of balloon platform; (ii) explore the influence of DCB application time; (iii) elucidate the importance on release kinetics of elevated pressure during DCB application; (iv) compare DCB delivery of two different drugs (sirolimus and paclitaxel) and; (v) compare simulations of DESs versus DCBs. Key measures of comparison are related to safety (drug content in tissue, DC) and efficacy (specific binding site saturation, %SBSS) markers. Our results highlight the pros and cons of each device in terms of DC and %SBSS levels achieved and, moreover, indicate the potential for designing a DCB that gives rise to sufficiently similar safety and efficacy indicators as current commercial DESs.


Subject(s)
Coronary Artery Disease , Drug-Eluting Stents , Coated Materials, Biocompatible , Coronary Artery Disease/therapy , Humans , Paclitaxel , Sirolimus , Stents , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL