Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Protoc Cytom ; 93(1): e75, 2020 06.
Article in English | MEDLINE | ID: mdl-32391975

ABSTRACT

Red blood cell biomechanics can provide us with a deeper understanding of macroscopic physiology and have the potential of being used for diagnostic purposes. In diseases like sickle cell anemia and malaria, reduced red blood cell deformability can be used as a biomarker, leading to further assays and diagnoses. A microfluidic system is useful for studying these biomechanical properties. We can observe detailed red blood cell mechanical behavior as they flow through microcapillaries using high-speed imaging and microscopy. Microfluidic devices are advantageous over traditional methods because they can serve as high-throughput tests. However, to rapidly analyze thousands of cells, there is a need for powerful image processing tools and software automation. We describe a workflow process using Image-Pro to identify and track red blood cells in a video, take measurements, and export the data for use in statistical analysis tools. The information in this protocol can be applied to large-scale blood studies where entire cell populations need to be analyzed from many cohorts of donors. © 2020 The Authors. Basic Protocol 1: Enhancing raw video for motion tracking Basic Protocol 2: Extracting motion tracking data from enhanced video.


Subject(s)
Cell Movement , Cell Tracking/methods , Data Analysis , Erythrocytes/physiology , Automation , Biomechanical Phenomena , Calibration , Humans
2.
Clin Hemorheol Microcirc ; 71(1): 113-116, 2019.
Article in English | MEDLINE | ID: mdl-30594919

ABSTRACT

BACKGROUND: Myalgic encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a poorly understood disease. Amongst others symptoms, the disease is associated with profound fatigue, cognitive dysfunction, sleep abnormalities, and other symptoms that are made worse by physical or mental exertion. While the etiology of the disease is still debated, evidence suggests oxidative damage to immune and hematological systems as one of the pathophysiological mechanisms of the disease. Since red blood cells (RBCs) are well-known scavengers of oxidative stress, and are critical in microvascular perfusion and tissue oxygenation, we hypothesized that RBC deformability is adversely affected in ME/CFS. METHODS: We used a custom microfluidic platform and high-speed microscopy to assess the difference in deformability of RBCs obtained from ME/CFS patients and age-matched healthy controls. RESULTS AND CONCLUSION: We observed from various measures of deformability that the RBCs isolated from ME/CFS patients were significantly stiffer than those from healthy controls. Our observations suggest that RBC transport through microcapillaries may explain, at least in part, the ME/CFS phenotype, and promises to be a novel first-pass diagnostic test.


Subject(s)
Erythrocyte Deformability/physiology , Erythrocytes/metabolism , Fatigue Syndrome, Chronic/blood , Erythrocytes/cytology , Female , Humans , Male , Microfluidics
SELECTION OF CITATIONS
SEARCH DETAIL
...