Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6043, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37758723

ABSTRACT

Plant disease resistance genes are widely used in agriculture to reduce disease outbreaks and epidemics and ensure global food security. In soybean, Rps (Resistance to Phytophthora sojae) genes are used to manage Phytophthora sojae, a major oomycete pathogen that causes Phytophthora stem and root rot (PRR) worldwide. This study aims to identify temporal changes in P. sojae pathotype complexity, diversity, and Rps gene efficacy. Pathotype data was collected from 5121 isolates of P. sojae, derived from 29 surveys conducted between 1990 and 2019 across the United States, Argentina, Canada, and China. This systematic review shows a loss of efficacy of specific Rps genes utilized for disease management and a significant increase in the pathotype diversity of isolates over time. This study finds that the most widely deployed Rps genes used to manage PRR globally, Rps1a, Rps1c and Rps1k, are no longer effective for PRR management in the United States, Argentina, and Canada. This systematic review emphasizes the need to widely introduce new sources of resistance to P. sojae, such as Rps3a, Rps6, or Rps11, into commercial cultivars to effectively manage PRR going forward.


Subject(s)
Phytophthora , Phytophthora/genetics , Genes, Plant , Agriculture , Argentina , Canada/epidemiology
2.
Plant J ; 87(5): 472-83, 2016 09.
Article in English | MEDLINE | ID: mdl-27197779

ABSTRACT

The rice pathogens Xanthomonas oryzae pathovar (pv.) oryzae and pv. oryzicola produce numerous transcription activator-like (TAL) effectors that increase bacterial virulence by activating expression of host susceptibility genes. Rice resistance mechanisms against TAL effectors include polymorphisms that prevent effector binding to susceptibility gene promoters, or that allow effector activation of resistance genes. This study identifies, in the heirloom variety Carolina Gold Select, a third mechanism of rice resistance involving TAL effectors. This resistance manifests through strong suppression of disease development in response to diverse TAL effectors from both X. oryzae pathovars. The resistance can be triggered by an effector with only 3.5 central repeats, is independent of the composition of the repeat variable di-residues that determine TAL effector binding specificity, and is independent of the transcriptional activation domain. We determined that the resistance is conferred by a single dominant locus, designated Xo1, that maps to a 1.09 Mbp fragment on chromosome 4. The Xo1 interval also confers complete resistance to the strains in the African clade of X. oryzae pv. oryzicola, representing the first dominant resistance locus against bacterial leaf streak in rice. The strong phenotypic similarity between the TAL effector-triggered resistance conferred by Xo1 and that conferred by the tomato resistance gene Bs4 suggests that monocots and dicots share an ancient or convergently evolved mechanism to recognize analogous TAL effector epitopes.


Subject(s)
Oryza/metabolism , Oryza/microbiology , Xanthomonas/pathogenicity , Disease Resistance/genetics , Gene Expression Regulation, Plant , Oryza/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism
3.
PLoS One ; 10(11): e0143553, 2015.
Article in English | MEDLINE | ID: mdl-26599211

ABSTRACT

Clavibacter michiganensis subsp. nebraskensis (Cmn), the causal organism of Goss's wilt and leaf blight of maize, can be detected in the phyllosphere of its host prior to disease development. We compared the morphology and pathogenicity of 37 putative isolates of Cmn recovered from asymptomatic and symptomatic maize leaves. Thirty-three of the isolates produced mucoid orange colonies, irrespective of the source of isolation and all but four of these isolates were pathogenic on maize. The remaining 4 isolates recovered from asymptomatic leaves had large fluidal yellow colonies, and were non-pathogenic on maize. Isolates varied in their aggressiveness on a susceptible hybrid of maize but no significant differences in aggressiveness were detected between epiphytic isolates and those recovered from diseased maize tissues. The genomics of Cmn is poorly understood; therefore as a first step to determining what genes may play a role in virulence, we compared 33 putative virulence gene sequences from 6 pathogenic and a non-pathogenic isolate recovered from the phyllosphere. Sequence polymorphisms were detected in 5 genes, cellulase A, two endoglucanases, xylanase B and a pectate lyase but there was no relationship with pathogenicity. Further research is needed to determine what genes play a role in virulence of Cmn. Our data show however, that the virulence factors in Cmn likely differ from those reported for the closely related subspecies michiganensis and sepedonicus.


Subject(s)
Micrococcaceae/isolation & purification , Plant Diseases/microbiology , Zea mays/microbiology , Genes, Bacterial , Micrococcaceae/genetics , Micrococcaceae/pathogenicity , Polymerase Chain Reaction , Polymorphism, Genetic , Polymorphism, Restriction Fragment Length , Virulence/genetics
4.
PLoS Pathog ; 10(2): e1003972, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24586171

ABSTRACT

Bacterial leaf streak of rice, caused by Xanthomonas oryzae pv. oryzicola (Xoc) is an increasingly important yield constraint in this staple crop. A mesophyll colonizer, Xoc differs from X. oryzae pv. oryzae (Xoo), which invades xylem to cause bacterial blight of rice. Both produce multiple distinct TAL effectors, type III-delivered proteins that transactivate effector-specific host genes. A TAL effector finds its target(s) via a partially degenerate code whereby the modular effector amino acid sequence identifies nucleotide sequences to which the protein binds. Virulence contributions of some Xoo TAL effectors have been shown, and their relevant targets, susceptibility (S) genes, identified, but the role of TAL effectors in leaf streak is uncharacterized. We used host transcript profiling to compare leaf streak to blight and to probe functions of Xoc TAL effectors. We found that Xoc and Xoo induce almost completely different host transcriptional changes. Roughly one in three genes upregulated by the pathogens is preceded by a candidate TAL effector binding element. Experimental analysis of the 44 such genes predicted to be Xoc TAL effector targets verified nearly half, and identified most others as false predictions. None of the Xoc targets is a known bacterial blight S gene. Mutational analysis revealed that Tal2g, which activates two genes, contributes to lesion expansion and bacterial exudation. Use of designer TAL effectors discriminated a sulfate transporter gene as the S gene. Across all targets, basal expression tended to be higher than genome-average, and induction moderate. Finally, machine learning applied to real vs. falsely predicted targets yielded a classifier that recalled 92% of the real targets with 88% precision, providing a tool for better target prediction in the future. Our study expands the number of known TAL effector targets, identifies a new class of S gene, and improves our ability to predict functional targeting.


Subject(s)
Bacterial Proteins/genetics , Genes, Plant , Host-Pathogen Interactions/genetics , Oryza/microbiology , Plant Diseases/genetics , Xanthomonas/genetics , Amino Acid Sequence , Base Sequence , DNA Mutational Analysis , Disease Resistance , Gene Expression Regulation, Plant , Gene Knockout Techniques , Oligonucleotide Array Sequence Analysis , Plant Leaves/microbiology , Reverse Transcriptase Polymerase Chain Reaction
5.
New Phytol ; 196(4): 1197-1207, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23078195

ABSTRACT

Genomes of the rice (Oryza sativa) xylem and mesophyll pathogens Xanthomonas oryzae pv. oryzae (Xoo) and pv. oryzicola (Xoc) encode numerous secreted transcription factors called transcription activator-like (TAL) effectors. In a few studied rice varieties, some of these contribute to virulence by activating corresponding host susceptibility genes. Some activate disease resistance genes. The roles of X. oryzae TAL effectors in diverse rice backgrounds, however, are poorly understood. Xoo TAL effectors that promote infection by activating SWEET sucrose transporter genes were expressed in TAL effector-deficient X. oryzae strain X11-5A, and assessed in 21 rice varieties. Some were also tested in Xoc on variety Nipponbare. Several Xoc TAL effectors were tested in X11-5A on four rice varieties. Xoo TAL effectors enhanced X11-5A virulence on most varieties, but to varying extents depending on the effector and variety. SWEET genes were activated in all tested varieties, but increased virulence did not correlate with activation level. SWEET activators also enhanced Xoc virulence on Nipponbare. Xoc TAL effectors did not alter X11-5A virulence. SWEET-targeting TAL effectors contribute broadly and non-tissue-specifically to virulence in rice, and their function is affected by host differences besides target sequences. Further, the utility of X11-5A for characterizing individual TAL effectors in rice was established.


Subject(s)
Bacterial Proteins/genetics , Oryza/genetics , Transcription Factors/genetics , Xanthomonas/genetics , Xanthomonas/pathogenicity , Bacterial Proteins/metabolism , Base Sequence , Binding Sites , Conserved Sequence , Disease Resistance , Host-Pathogen Interactions/genetics , Molecular Sequence Data , Oryza/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Plants, Genetically Modified , Promoter Regions, Genetic , Transcription Factors/metabolism , Virulence/genetics
6.
Methods Mol Biol ; 435: 153-63, 2008.
Article in English | MEDLINE | ID: mdl-18370074

ABSTRACT

Many retrotransposons and retroviruses display integration site specificity. Increasingly, this specificity is found to result from recognition by the retroelement of specific chromatin states or DNA-bound protein complexes. A well-studied example of such a targeted retroelement is the Saccharomyces Ty5 retrotransposon, which integrates into heterochromatin at the telomeres and silent mating loci. Targeting is mediated by an interaction between Ty5 integrase (IN) and the heterochromatin protein silent information regulator 4 (Sir4). A small motif of IN, called the targeting domain, is responsible for this interaction. Ty5 integration can be directed to DNA sites outside of heterochromatin by tethering Sir4 to ectopic locations using fusion proteins between Sir4 and a DNA-binding domain. Alternatively, the targeting domain of Ty5 can be swapped with peptides that recognize other protein partners, thereby generating Ty5 elements with new target specificities. The mechanism of Ty5 target site choice suggests that integration specificity of other retrotransposons and retroviruses can be altered by engineering integrases to recognize DNA-bound protein partners. Retroelements can also be used to probe chromatin dynamics and the distribution of protein complexes on chromosomes. Here, we describe the basic assay by which Ty5 integration is monitored to sites of tethered Sir4.


Subject(s)
Retroelements/genetics , Saccharomyces/genetics , Binding Sites/genetics , DNA, Fungal/genetics , DNA, Fungal/metabolism , Electroporation , Escherichia coli/genetics , Integrases/genetics , Integrases/metabolism , Plasmids/genetics , Saccharomyces/metabolism , Silent Information Regulator Proteins, Saccharomyces cerevisiae/genetics , Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...