Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Ind Health ; 20(1-5): 57-68, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15807409

ABSTRACT

An in vitro study was conducted to determine the effects of variable concentrations of trace metals on human cultured mammary cells. Monolayers of human mortal (MCF-12A) and immortal (MDA-MB231) mammary epithelial cells were incubated in the absence or presence of increasing concentrations of arsenic (As), mercury (Hg) and copper (Cu) for 24-h, 72-h, 4-d, and 7-d. The MTT assay was used to assess viability for all time periods and cell proliferation was monitored for 4-d and 7-d studies. Monolayers were also labeled with rhodamine-110 (R-6501), Sytox green, and Celltiter blue fluorescent dyes as indicators for intracellular esterase activity, nucleic acid staining, and cell reduction/viability, respectively. Total incubation time with chemical plus dyes was 24 h. For 24-h and 72-h studies, cells were seeded in 96-well plates, after which confluent monolayers were exposed to increasing concentrations of chemicals. For 4-d and 7-d studies, cells were seeded in 12-well plates at 1/3 confluent density (day 0) and exposed to increasing concentrations of metals on day 1. All cells were counted on days 4 and 7. In addition, test medium was removed from select groups of cultures on day 4, replaced with fresh medium in the absence of chemical (recovery studies), and assays were performed on day 7 as above. The data suggest that there is a consistent protective and/or stimulating effect of metals at the lowest concentrations in MCF-12A cells that is not observed in immortal MDA-MB231 cells. In fact, cell viability of MCF-12A cells is stimulated by otherwise equivalent inhibitory concentrations of As, Cu, and Hg on MDA-MB231 cells at 24-h. Whereas As and Hg suppress proliferation and viability in both cell lines after 4-d and 7-d of exposure, Cu enhances cell proliferation and viability of MCF-12A cells. MDA-MB231, however, recover better after 4-days of toxic insult. In addition, nutritional manipulation of media between the cell lines, or pretreatment with penicillamine, did not alter the hormesis effect displayed by MCF-12A. Growth of these cells however was not maintained in the alternative medium. The study demonstrates that a hormesis effect from trace metals is detectable in cultured mammary cells; fluorescent indicators, however, are not as sensitive as cell proliferation or MTT in recognizing the subtle responses. Also, sensitivity of mammary cells to lower concentrations of Cu, a biologically important trace metal, may play an important role in controlling cellular processes and proliferation. The ability to detect this in vitro phenomenon implies that similar processes, occurring in vivo, may be responsible for the development, induction, or enhancement of human cancers.


Subject(s)
Cell Line, Transformed/drug effects , Cell Proliferation/drug effects , Trace Elements/toxicity , Arsenic/toxicity , Cell Line, Transformed/enzymology , Cell Line, Transformed/pathology , Cell Survival/drug effects , Copper/toxicity , Dose-Response Relationship, Drug , Esterases/metabolism , Female , Formazans/metabolism , Humans , Mercury/toxicity , Tetrazolium Salts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...