Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Eur J Pharmacol ; 413(2-3): 143-50, 2001 Feb 16.
Article in English | MEDLINE | ID: mdl-11226387

ABSTRACT

Starting with a partial sequence from Genbank, polymerase chain reaction (PCR) was utilized to isolate the full-length cDNA for NK(3) receptor from mouse brain. The murine NK(3) receptor has a predicted sequence of 452 amino acids, sharing 96% and 86% identity to the rat and human NK(3) receptors, respectively. Binding affinities and functional potencies of tachykinin receptor agonists were similar in HEK (human embryonic kidney) 293 cells expressing murine NK(3) receptor and human NK(3) receptor, although substance P and neurokinin A were more potent stimulators of Ca(2+) mobilization in murine NK(3) receptor cells. NK(3) receptor-selective antagonists from two structural classes, had 10- to 100-fold lower binding affinities for murine NK(3) receptor compared to human NK(3) receptor, and about 5- to 10-fold reduced potency in the murine NK(3) receptor functional assay. The results demonstrate species differences in the potencies of tachykinin receptor antagonists in murine and human NK(3) receptors, and the lower potencies in the former should be taken into consideration when using murine disease models.


Subject(s)
Calcium/metabolism , Receptors, Neurokinin-3/physiology , Amino Acid Sequence/physiology , Animals , Cloning, Molecular/methods , Humans , Mice , Molecular Sequence Data , Neurokinin A/metabolism , Neurokinin A/pharmacology , Quinolines/chemistry , Quinolines/metabolism , Quinolines/pharmacology , Receptors, Neurokinin-3/drug effects
2.
J Pharmacol Exp Ther ; 295(1): 373-81, 2000 Oct.
Article in English | MEDLINE | ID: mdl-10992004

ABSTRACT

The pharmacological and pharmacokinetic profile of SB-222200 [(S)-(-)-N-(alpha-ethylbenzyl)-3-methyl-2-phenylquinoline-4-car boxami de], a human NK-3 receptor (hNK-3R) antagonist, was determined. SB-222200 inhibited (125)I-[MePhe(7)]neurokinin B (NKB) binding to Chinese hamster ovary (CHO) cell membranes stably expressing the hNK-3 receptor (CHO-hNK-3R) with a K(i) = 4.4 nM and antagonized NKB-induced Ca(2+) mobilization in HEK 293 cells stably expressing the hNK-3 receptor (HEK 293-hNK-3R) with an IC(50) = 18.4 nM. SB-222200 was selective for hNK-3 receptors compared with hNK-1 (K(i) > 100,000 nM) and hNK-2 receptors (K(i) = 250 nM). In HEK 293 cells transiently expressing murine NK-3 receptors (HEK 293-mNK-3R), SB-222200 inhibited binding of (125)I-[MePhe(7)]NKB (K(i) = 174 nM) and antagonized NKB (1 nM)-induced calcium mobilization (IC(50) = 265 nM). In mice oral administration of SB-222200 produced dose-dependent inhibition of behavioral responses induced by i.p. or intracerebral ventricular administration of the NK-3 receptor-selective agonist, senktide, with ED(50) values of approximately 5 mg/kg. SB-222200 effectively crossed the blood-brain barrier in the mouse and rat. The inhibitory effect of SB-222200 against senktide-induced behavioral responses in the mouse correlated significantly with brain, but not plasma, concentrations of the compound. Pharmacokinetic evaluation of SB-222200 in rat after oral administration (8 mg/kg) indicated sustained plasma concentrations (C(max) = about 400 ng/ml) and bioavailability of 46%. The preclinical profile of SB-222200, demonstrating high affinity, selectivity, reversibility, oral activity, and central nervous system penetration, suggests that it will be a useful tool compound to define the physiological and pathophysiological roles of NK-3 receptors, in particular in the central nervous system.


Subject(s)
Brain/drug effects , Quinolines/pharmacology , Receptors, Neurokinin-3/antagonists & inhibitors , Animals , Brain/metabolism , CHO Cells , Calcium/metabolism , Cricetinae , Dose-Response Relationship, Drug , Humans , In Vitro Techniques , Iris/drug effects , Iris/physiology , Male , Mice , Mice, Inbred BALB C , Peptide Fragments/pharmacology , Quinolines/pharmacokinetics , Rabbits , Rats , Rats, Sprague-Dawley , Substance P/analogs & derivatives , Substance P/pharmacology
3.
J Biol Chem ; 275(47): 36626-31, 2000 Nov 24.
Article in English | MEDLINE | ID: mdl-10969084

ABSTRACT

Eosinophils have been implicated in the pathogenesis of asthma and other allergic diseases. Several CC chemokines including eotaxin (CCL-11), eotaxin-2 (CCL-24), RANTES (CCL-5), and monocyte chemotactic protein-3 (MCP-3, CCL-7) and 4 (MCP-4, CCL-13) are potent eosinophil chemotactic and activating peptides acting through CC chemokine receptor-3 (CCR3). Thus, antagonism of CCR3 could have a therapeutic role in asthma and other eosinophil-mediated diseases. A high throughput, cellular functional screen was configured using RBL-2H3 cells stably expressing CCR3 (RBL-2H3-CCR3) to identify non-peptide receptor antagonists. A small molecule CCR3 antagonist was identified, SK&F 45523, and chemical optimization led to the generation of a number of highly potent, selective CCR3 antagonists including SB-297006 and SB-328437. These compounds were further characterized in vitro and demonstrated high affinity, competitive inhibition of (125)I-eotaxin and (125)I-MCP-4 binding to human eosinophils. The compounds were potent inhibitors of eotaxin- and MCP-4-induced Ca(2+) mobilization in RBL-2H3-CCR3 cells and eosinophils. Additionally, SB-328437 inhibited eosinophil chemotaxis induced by three ligands that activate CCR3 with similar potencies. Selectivity was affirmed using a panel of 10 seven-transmembrane receptors. This is the first description of a non-peptide CCR3 antagonist, which should be useful in further elucidating the pathophysiological role of CCR3 in allergic inflammatory diseases.


Subject(s)
Benzamides/pharmacology , Cell Movement/drug effects , Chemokines, CC/antagonists & inhibitors , Cytokines/antagonists & inhibitors , Eosinophils/drug effects , Monocyte Chemoattractant Proteins/antagonists & inhibitors , Naphthalenes/pharmacology , Phenylalanine/analogs & derivatives , Receptors, Chemokine/antagonists & inhibitors , Receptors, HIV/antagonists & inhibitors , Asthma/physiopathology , Binding, Competitive , Calcium/metabolism , Cell Line , Chemokine CCL11 , Chemokine CCL24 , Humans , Phenylalanine/pharmacology , Receptors, CCR3 , Receptors, Chemokine/physiology
4.
Mol Pharmacol ; 58(3): 552-9, 2000 Sep.
Article in English | MEDLINE | ID: mdl-10953048

ABSTRACT

There have been proposals that the tachykinin receptor classification should be extended to include a novel receptor, the "neurokinin-4" receptor (NK-4R), which has a close homology with the human NK-3 receptor (hNK-3R). We compared the pharmacological and molecular biological characteristics of the hNK-3R and NK-4R. Binding experiments, with (125)I-[MePhe(7)]-NKB binding to HEK 293 cell membranes transiently expressing the hNK-3R (HEK 293-hNK-3R) or NK-4R (HEK 293-NK-4R), and functional studies (Ca(2+) mobilization in the same cells) revealed a similar profile of sensitivity to tachykinin agonists and antagonists for both receptors; i.e., in binding studies with the hNK-3R, MePhe(7)-NKB > NKB > senktide >> NKA = Substance P; with the NK-4R, MePhe(7)-NKB > NKB = senktide >> Substance P = NKA; and with antagonists, SB 223412 = SR 142801 > SB 222200 >> SR 48968 >> CP 99994 for both hNK-3R and NK-4R. Thus, the pharmacology of the two receptors was nearly identical. However, attempts to isolate or identify the NK-4R gene by using various molecular biological techniques were unsuccessful. Procedures, including nested polymerase chain reaction studies, that used products with restriction endonuclease sites specific for either hNK-3R or NK-4R, failed to demonstrate the presence of NK-4R in genomic DNA from human, monkey, mouse, rat, hamster, or guinea pig, and in cDNA libraries from human lung, brain, or heart, whereas the hNK-3R was detectable in the latter libraries. In view of the failure to demonstrate the presence of the putative NK-4R it is thought to be premature to extend the current tachykinin receptor classification.


Subject(s)
Receptors, Neurokinin-3/metabolism , Receptors, Tachykinin/metabolism , Binding, Competitive , Biological Transport , Calcium/metabolism , Cells, Cultured , DNA, Complementary/analysis , Humans , Polymerase Chain Reaction , Radioligand Assay , Receptors, Neurokinin-3/drug effects , Receptors, Neurokinin-3/genetics , Receptors, Tachykinin/drug effects , Receptors, Tachykinin/genetics , Receptors, Tachykinin/isolation & purification , Restriction Mapping , Tachykinins/metabolism
5.
Cochrane Database Syst Rev ; (3): CD002028, 2000.
Article in English | MEDLINE | ID: mdl-10908522

ABSTRACT

BACKGROUND: Most people with epilepsy have a good prognosis and their seizures can be well controlled with the use of a single antiepileptic drug, but up to 30 % develop refractory epilepsy, especially those with partial seizures. In this review we summarise the current evidence regarding oxcarbazepine when used as an add-on treatment for drug-resistant partial epilepsy. OBJECTIVES: To evaluate the effects of oxcarbazepine when used as an add-on treatment for drug-resistant partial epilepsy. SEARCH STRATEGY: We searched the Cochrane Epilepsy Group's trials register, the Cochrane Controlled Trials Register (Cochrane Library Issue 1, 2000), MEDLINE (January 1966 to December 1999) and reference lists of articles. We also contacted Novartis (manufacturers of oxcarbazepine) and experts in the field. SELECTION CRITERIA: Randomized, placebo-controlled, double-blind, add-on trials of oxcarbazepine in patients with drug-resistant partial epilepsy. DATA COLLECTION AND ANALYSIS: Two reviewers independently assessed trials for inclusion and extracted the relevant data. The following outcomes were assessed : (a) 50 % or greater reduction in seizure frequency; (b) treatment withdrawal (any reason); (c) side effects. Primary analyses were intention to treat. Summary odds ratios were estimated for each outcome. MAIN RESULTS: Overall Odds Ratio (OR) (95 % Confidence Interval (CIs)) for 50 % or greater reduction in seizure frequency compared to placebo 2.96 (2.20,4.00). Treatment withdrawal OR (95 % CIs) compared to placebo 2.17 (1.59,2.97). Side effects: OR (99 % CIs) compared to placebo, ataxia 2.93(1.72,4.99); dizziness 3.05 (1.99, 4. 67); fatigue 1.80 (1.02, 3.19); nausea 2.88 (1.77, 4.69); somnolence 2.55 (1.84, 3.55); diplopia 4.32 (2.65, 7.04), were significantly associated with oxcarbazepine. REVIEWERS' CONCLUSIONS: Oxcarbazepine has efficacy as an add-on treatment in patients with drug-resistant partial epilepsy, both in adults and children. However, trials reviewed were of relatively short duration, and provide no evidence about the long term effects of oxcarbazepine. Results cannot be extrapolated to monotherapy or to patients with other epilepsy types.


Subject(s)
Anticonvulsants/therapeutic use , Carbamazepine/therapeutic use , Epilepsies, Partial/drug therapy , Adult , Carbamazepine/analogs & derivatives , Child , Drug Resistance , Drug Therapy, Combination , Humans , Outcome Assessment, Health Care , Oxcarbazepine , Randomized Controlled Trials as Topic
6.
J Biol Chem ; 275(34): 25965-71, 2000 Aug 25.
Article in English | MEDLINE | ID: mdl-10851242

ABSTRACT

Opiate tolerance and dependence are major clinical and social problems. The anti-opiate neuropeptides FF and AF (NPFF and NPAF) have been implicated in pain modulation as well as in opioid tolerance and may play a critical role in this process, although their mechanism of action has remained unknown. Here we describe a cDNA encoding a novel neuropeptide Y-like human orphan G protein-coupled receptor (GPCR), referred to as HLWAR77 for which NPAF and NPFF have high affinity. Cells transiently or stably expressing HLWAR77 bind and respond in a concentration-dependent manner to NPAF and NPFF and are also weakly activated by FMRF-amide (Phe-Met-Arg-Phe-amide) and a variety of related peptides. The high affinity and potency of human NPFF and human NPAF for HLWAR77 strongly suggest that these are the cognate ligands for this receptor. Expression of HLWAR77 was demonstrated in brain regions associated with opiate activity, consistent with the pain-modulating activity of these peptides, whereas the expression in adipose tissue suggests other physiological and pathophysiological activities for FMRF-amide neuropeptides. The discovery that the anti-opiate neuropeptides are the endogenous ligands for HLWAR77 will aid in defining the physiological role(s) of these ligands and facilitate the identification of receptor agonists and antagonists.


Subject(s)
Neuropeptides/metabolism , Oligopeptides/metabolism , Receptors, Neuropeptide/metabolism , Amino Acid Sequence , Arrestins/metabolism , Base Sequence , Calcium/metabolism , Cell Line , FMRFamide/pharmacology , Humans , Ligands , Molecular Sequence Data , Receptors, Neuropeptide/genetics , beta-Arrestins
7.
Mol Pharmacol ; 57(6): 1190-8, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10825390

ABSTRACT

We describe here the cloning and characterization of a rat homolog of the chemokine receptor CXCR3. The predicted amino acid sequence of rat CXCR3 contains 367 amino acid residues, sharing 96 and 87% amino acid sequence identity to the murine and human CXCR3, respectively. Among a large panel of chemokines tested, only interferon-inducible protein-10 (IP-10), interferon-gamma-induced monokine, and interferon-inducible T cell alpha-chemoattractant demonstrated specific abilities to induce an intracellular calcium mobilization response in human embryonic kidney 293 cells transfected with rat CXCR3 expression vector. (125)I-IP-10 competition binding studies to the CXCR3-transfected human embryonic kidney 293 cells demonstrated that human IP-10 and interferon-inducible T cell alpha-chemoattractant are more potent ligands than human interferon-gamma-induced monokine. Following our previous observation for the induced expression of IP-10 in focal stroke, we demonstrate here the time-dependent up-regulation of CXCR3 mRNA in the rat ischemic cortex after permanent occlusion of the middle cerebral artery. A significant increase in (125)I-IP-10-specific binding to ischemic cerebral cortical samples was obtained and paralleled the increase in CXCR3 mRNA expression. The changes in receptor expression and ligand binding correlate highly with known changes in leukocyte accumulation, and gliosis occurred after focal stroke. These data suggest that CXCR3/IP-10 may be a potential novel therapeutic target in focal stroke. In addition, the cloning of rat CXCR3 provides an important tool for the investigation of the pathophysiological role of CXCR3 in other rodent disease models.


Subject(s)
Chemokines, CXC/metabolism , Receptors, Chemokine/genetics , Stroke/metabolism , Amino Acid Sequence , Animals , Base Sequence , Brain Ischemia/metabolism , Cells, Cultured , Cerebral Arterial Diseases/metabolism , Cerebral Cortex/metabolism , Chemokine CXCL10 , Cloning, Molecular , DNA, Complementary/analysis , Humans , Iodine Radioisotopes , Male , Molecular Sequence Data , RNA, Messenger/biosynthesis , Radioligand Assay , Rats , Rats, Inbred SHR , Receptors, CXCR3 , Receptors, Chemokine/biosynthesis , Sequence Homology, Amino Acid , Transfection
8.
Article in English | MEDLINE | ID: mdl-10477044

ABSTRACT

Leukotriene B4 (LTB4) and 12-(R)-hydroxy-5,8,10,14-eicosatetraenoic acid (12-[R]-HETE) have been postulated to contribute to the pathophysiology of inflammatory diseases. SB 201993, (E)-3-[[[[6-(2-carboxyethenyl)-5-[[8-(4-methoxyphenyl)octyl] oxy]-2-pyridinyl] methyl] thio] methyl] benzoic acid, identified from a chemical series designed as ring-fused analogs of LTB4, was evaluated as an antagonist of LTB4- and 12-(R)-HETE-induced responses in vitro and for anti-inflammatory activity in vivo. SB 201993 competitively antagonized [3-H]-LTB4 binding to intact human neutrophils (Ki = 7.6 nM) and to membranes of RBL 2H3 cells expressing the LTB4 receptor (RBL 2H3-LTB4R; IC50 = 154 nM). This compound demonstrated competitive antagonism of LTB4- and 12-(R)-HETE-induced Ca2+ mobilization responses in human neutrophils (IC50s of 131 nM and 105 nM, respectively) and inhibited LTB4-induced Ca2+ mobilization in human cultured keratinocytes (IC50 = 61 nM), RBL 2H3-LTB4R cells (IC50 = 255 nM) and mouse neutrophils (IC50 = 410 nM). SB 201993 showed weak LTD4-receptor binding affinity (Ki = 1.9 microM) and inhibited 5-lipoxygenase (IC50 of 3.6 microM), both in vitro and ex vivo. In vivo, SB 201993 inhibited LTB4-induced neutrophil infiltration in mouse skin and produced dose-related, long lasting topical anti-inflammatory activity against the fluid and cellular phases of arachidonic acid-induced mouse ear inflammation (ED50 of 580 microg/ear and 390 microg/ear, respectively). Similarly, anti-inflammatory activity was also observed in the murine phorbol ester-induced cutaneous inflammation model (ED50 of 770 and 730 microg/ear, respectively, against the fluid and cellular phases). These results indicate that SB 201993 blocks the actions of LTB4 and 12-(R)-HETE and inhibits a variety of inflammatory responses; and thus may be a useful compound to evaluate the role of these mediators in disease models.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Benzoates/pharmacology , Pyridines/pharmacology , Receptors, Leukotriene B4/antagonists & inhibitors , 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/pharmacology , Animals , Binding, Competitive , Calcimycin/pharmacology , Calcium/blood , Calcium/metabolism , Cell Membrane/metabolism , Cells, Cultured , Guinea Pigs , Humans , Ionophores/pharmacology , Keratinocytes/drug effects , Keratinocytes/metabolism , Leukotriene B4/blood , Leukotriene B4/pharmacology , Male , Mice , Neutrophils/drug effects , Neutrophils/metabolism
9.
Mol Pharmacol ; 56(3): 657-63, 1999 Sep.
Article in English | MEDLINE | ID: mdl-10462554

ABSTRACT

The cysteinyl leukotrienes (CysLTs) have been implicated in the pathophysiology of inflammatory disorders, in particular asthma, for which the CysLT receptor antagonists pranlukast, zafirlukast, and montelukast, have been introduced recently as novel therapeutics. Here we report on the molecular cloning, expression, localization, and pharmacological characterization of a CysLT receptor (CysLTR), which was identified by ligand fishing of orphan seven-transmembrane-spanning, G protein-coupled receptors. This receptor, expressed in human embryonic kidney (HEK)-293 cells responded selectively to the individual CysLTs, LTC(4), LTD(4), or LTE(4), with a calcium mobilization response; the rank order potency was LTD(4) (EC(50) = 2.5 nM) > LTC(4) (EC(50) = 24 nM) > LTE(4) (EC(50) = 240 nM). Evidence was provided that LTE(4) is a partial agonist at this receptor. [(3)H]LTD(4) binding and LTD(4)-induced calcium mobilization in HEK-293 cells expressing the CysLT receptor were potently inhibited by the structurally distinct CysLTR antagonists pranlukast, montelukast, zafirlukast, and pobilukast; the rank order potency was pranlukast = zafirlukast > montelukast > pobilukast. LTD(4)-induced calcium mobilization in HEK-293 cells expressing the CysLT receptor was not affected by pertussis toxin, and the signal appears to be the result of the release from intracellular stores. Localization studies indicate the expression of this receptor in several tissues, including human lung, human bronchus, and human peripheral blood leukocytes. The discovery of this receptor, which has characteristics of the purported CysLT(1) receptor subtype, should assist in the elucidation of the pathophysiological roles of the CysLTs and in the identification of additional receptor subtypes.


Subject(s)
Membrane Proteins , Receptors, Leukotriene/genetics , Amino Acid Sequence , Base Sequence , Binding Sites , Biological Transport/drug effects , Calcium/metabolism , Cells, Cultured , Cloning, Molecular , Humans , Leukotriene D4/pharmacology , Molecular Sequence Data , Pertussis Toxin , Receptors, Leukotriene/metabolism , Signal Transduction/drug effects , Virulence Factors, Bordetella/pharmacology
10.
Farmaco ; 54(6): 364-74, 1999 Jun 30.
Article in English | MEDLINE | ID: mdl-10443017

ABSTRACT

Results from a medicinal chemistry approach aimed at replacing the quinoline ring system in the potent and selective human neurokinin-3 (hNK-3) receptor antagonists 1-4 of general formula I are discussed. The data give further insight upon the potential NK-3 pharmacophore. In particular, it is highlighted that both the benzene-condensed ring and the quinoline nitrogen are crucial determinants for optimal binding affinity to the hNK-3 receptor. Some novel compounds maintained part of the binding affinity to the receptor (5, 6, 10 and 13) and compound 5, featuring the naphthalene ring system, appears to be suitable for further modifications; it offers the option to introduce electron-withdrawing groups at position 2 and 4, conferring on the ring an overall electron-deficiency similar to that of the quinoline.


Subject(s)
Quinolines/chemical synthesis , Quinolines/pharmacology , Receptors, Neurokinin-3/antagonists & inhibitors , Animals , Binding, Competitive/drug effects , CHO Cells , Cloning, Molecular , Cricetinae , Humans , Radioligand Assay , Structure-Activity Relationship
11.
J Med Chem ; 42(6): 1053-65, 1999 Mar 25.
Article in English | MEDLINE | ID: mdl-10090788

ABSTRACT

Optimization of the previously reported 2-phenyl-4-quinolinecarboxamide NK-3 receptor antagonist 14, with regard to potential metabolic instability of the ester moiety and affinity and selectivity for the human neurokinin-3 (hNK-3) receptor, is described. The ester functionality could be successfully replaced by the ketone (31) or by lower alkyl groups (Et, 21, or n-Pr, 24). Investigation of the substitution pattern of the quinoline ring resulted in the identification of position 3 as a key position to enhance hNK-3 binding affinity and selectivity for the hNK-3 versus the hNK-2 receptor. All of the chemical groups introduced at this position, with the exception of halogens, increased the hNK-3 binding affinity, and compounds 53 (3-OH, SB 223412, hNK-3-CHO binding Ki = 1.4 nM) and 55 (3-NH2, hNK-3-CHO binding Ki = 1.2 nM) were the most potent compounds of this series. Selectivity studies versus the other neurokinin receptors (hNK-2-CHO and hNK-1-CHO) revealed that 53 is about 100-fold selective for the hNK-3 versus hNK-2 receptor, with no affinity for the hNK-1 at concentrations up to 100 microM. In vitro studies demonstrated that 53 is a potent functional antagonist of the hNK-3 receptor (reversal of senktide-induced contractions in rabbit isolated iris sphincter muscles and reversal of NKB-induced Ca2+ mobilization in CHO cells stably expressing the hNK-3 receptor), while in vivo this compound showed oral and intravenous activity in NK-3 receptor-driven models (senktide-induced behavioral responses in mice and senktide-induced miosis in rabbits). Overall, the biological data indicate that (S)-N-(1-phenylpropyl)-3-hydroxy-2-phenylquinoline-4-carboxamide (53, SB 223412) may serve as a pharmacological tool in animal models of disease to assess the functional and pathophysiological role of the NK-3 receptor and to establish therapeutic indications for non-peptide NK-3 receptor antagonists.


Subject(s)
Quinolines/chemical synthesis , Receptors, Neurokinin-3/antagonists & inhibitors , Animals , CHO Cells , Calcium/metabolism , Cell Line , Cloning, Molecular , Cricetinae , Humans , In Vitro Techniques , Iris/drug effects , Iris/physiology , Mice , Miosis/physiopathology , Motor Activity/drug effects , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Peptide Fragments/pharmacology , Quinolines/chemistry , Quinolines/metabolism , Rabbits , Radioligand Assay , Receptors, Neurokinin-3/biosynthesis , Structure-Activity Relationship , Substance P/analogs & derivatives , Substance P/pharmacology
12.
J Leukoc Biol ; 62(5): 667-75, 1997 Nov.
Article in English | MEDLINE | ID: mdl-9365122

ABSTRACT

Eotaxin has been found to bind exclusively to a single chemokine receptor, CCR3. Using expression sequence tag screening of an activated monocyte library, a second chemokine has been identified; it was expressed and purified from a Drosophila cell culture system and appears to only activate CCR3. Eotaxin-2, MPIF-2, or CKbeta-6, is a human CC chemokine with low amino acid sequence identity to other chemokines. Eotaxin-2 promotes chemotaxis and Ca2+ mobilization in human eosinophils but not in neutrophils or monocytes. Cross-desensitization calcium mobilization experiments using purified eosinophils indicate that eotaxin and MCP-4, but not RANTES, MIP-1alpha, or MCP-3, can completely cross-desensitize the calcium response to eotaxin-2 on these cells, indicating that eotaxin-2 shares the same receptor used by eotaxin and MCP-4. Eotaxin-2 was the most potent eosinophil chemoattractant of all the chemokines tested. Eotaxin-2 also displaced 125I-eotaxin bound to the cloned CCR3 stably expressed in CHO cells (CHO-CCR3) and to freshly isolated human eosinophils with affinities similar to eotaxin and MCP-4. 125I-Eotaxin-2 binds with high affinity to eosinophils and both eotaxin and cold eotaxin-2 displace the ligand with equal affinity. Eotaxin and eotaxin-2 promote a Ca2+ transient in RBL-2H3 cells stably transfected with CCR3 (RBL-2H3-CCR3) and both ligands cross-desensitized the response of the other but not the response to LTD4. The data indicate that eotaxin-2 is a potent eosinophil chemotactic chemokine exerting its activity solely through the CCR3 receptor.


Subject(s)
Chemokines, CC , Chemokines/physiology , Eosinophils/physiology , Receptors, Chemokine/metabolism , Amino Acid Sequence , Animals , Binding, Competitive , CHO Cells/metabolism , Calcium/metabolism , Cell Movement/physiology , Chemokine CCL11 , Chemokine CCL24 , Chemokine CCL8 , Chemokines/genetics , Chemokines/isolation & purification , Cloning, Molecular , Cricetinae , Cytokines/genetics , DNA, Complementary/genetics , Eosinophils/drug effects , Eosinophils/metabolism , Humans , Molecular Sequence Data , Monocyte Chemoattractant Proteins/genetics , Rats , Receptors, CCR3 , Receptors, Chemokine/physiology
13.
J Pharmacol Exp Ther ; 283(1): 411-8, 1997 Oct.
Article in English | MEDLINE | ID: mdl-9336350

ABSTRACT

A growing family of proteins, known as the chemokines, play an important role in the recruitment and activation of inflammatory cells. The purpose of these studies was to characterize the chemokine receptors present on human sodium butyrate differentiated EoL-3 cells (dEoL-3 cells). Using a combination of 3' rapid amplification of cDNA ends and nested polymerase chain reaction, we detected mRNA for CC chemokine receptor (CCR)1, CCR2, CCR3 and low level of CCR5. Radioligand binding studies demonstrated high-affinity saturable binding for both 125I-macrophage inflammatory protein (MIP)-1alpha and 125I-regulated upon activation normal T cell expressed and secreted (RANTES) with Kd values of 1.4 and 7 nM, respectively. Competition binding with chemokines demonstrated exactly the same rank order of potency for displacement of both ligands: MIP-1alpha approximately monocyte chemoattractant protein (MCP)-3 approximately RANTES > MIP-1beta >> MCP-1 >>> IL-8. RANTES, MCP-3 and MIP-1alpha all produced concentration-dependent transient increases in intracellular calcium concentrations in dEoL-3 cells. Desensitization studies indicated that RANTES, MIP-1alpha and MCP-3 interacted at the same receptor, which is identical in characterization to the cloned CCR1. 125I-MCP-1 also demonstrated high-affinity satuable binding to dEoL-3 cells with a Kd value of 0.4 nM. Competition studies showed that MCP-3 was slightly more potent than MCP-1 and MCP-2. MIP-1alpha, MIP-1beta and RANTES were unable to displace 125I-MCP-1. Addition of either MCP-1 or MCP-3 produced a concentration-dependent elevation of intracellular calcium with a maximun response 2-fold higher than that seen with RANTES or MIP-1alpha. Desensitization studies indicated that MCP-1 and MCP-3 function through CCR2 on these cells. Thus binding and functional studies indicate that dEoL-3 cells express functional CCR1 and CCR2 and that these cells may serve as an important system with which to study the regulation and role of these receptors.


Subject(s)
Chemokines, CC/metabolism , Chemokines/physiology , Hypereosinophilic Syndrome/metabolism , Receptors, Chemokine/analysis , Chemokine CCL2/metabolism , Chemokine CCL5/metabolism , Humans , Hypereosinophilic Syndrome/pathology , Polymerase Chain Reaction , RNA, Messenger/analysis , Receptors, Chemokine/genetics , Tumor Cells, Cultured
14.
J Pharmacol Exp Ther ; 281(3): 1303-11, 1997 Jun.
Article in English | MEDLINE | ID: mdl-9190866

ABSTRACT

The in vitro and in vivo pharmacological profile of SB 223412 [(S)-(-)-N-(alpha-ethylbenzyl)-3-hydroxy-2-phenylquinoline-4-carbo xamide], a novel human NK-3 (hNK-3) receptor antagonist, is described. SB 223412 demonstrated enantioselective affinity for inhibition of [125I][MePhe7]neurokinin B (NKB) binding to membranes of CHO cells expressing the hNK-3 receptor (CHO hNK-3). SB 223412, the (S)-isomer, (Ki = 1.0 nM), has similar affinity as the natural ligand, NKB (Ki = 0.8 nM) and another nonpeptide NK-3 receptor antagonist, SR 142801 (Ki = 1.2 nM). SB 223412 was selective for hNK-3 receptors compared with hNK-1 (>10,000-fold selective) and hNK-2 receptors (>140-fold selective), and selectivity was further demonstrated by its lack of effect, in concentrations up to 1 or 10 microM, in >60 receptor, enzyme and ion channel assays. SB 223412 enantioselectively inhibited the NKB-induced Ca++ mobilization in HEK 293 cells stably expressing the hNK-3 receptor. SB 223412 (10-1,000 nM) produced concentration-dependent rightward shifts in NKB-induced Ca++ mobilization concentration-response curves with a Kb value of 3 nM. In addition, SB 223412 antagonized senktide-induced contraction in the isolated rabbit iris sphincter muscle (Kb = 1.6 nM). In mice, oral administration of SB 223412 produced dose-dependent inhibition of behavioral responses induced by the NK-3 receptor-selective agonist, senktide (ED50 = 12.2 mg/kg). Pharmacokinetic evaluation of SB 223412 in rat and dog indicated low plasma clearance, oral bioavailability and high and sustained plasma concentrations after 4 to 8 mg/kg oral dosages. The preclinical profile of SB 223412 (high affinity, selectivity, reversibility and oral activity) suggests that it will be a useful tool compound to define the physiological and pathophysiological roles of NK-3 receptors.


Subject(s)
Piperidines/pharmacology , Quinolines/pharmacology , Receptors, Neurokinin-3/drug effects , Receptors, Tachykinin/antagonists & inhibitors , Animals , CHO Cells/drug effects , Calcium/metabolism , Cricetinae , Dogs , Humans , Mice , Piperidines/pharmacokinetics , Rabbits , Radioligand Assay , Rats
15.
J Biol Chem ; 272(26): 16404-13, 1997 Jun 27.
Article in English | MEDLINE | ID: mdl-9195948

ABSTRACT

Here we describe the characterization of a novel human CC chemokine, tentatively named monocyte chemotactic protein (MCP-4). This chemokine was detected by random sequencing of expressed sequence tags in cDNA libraries. The full-length cDNA revealed an open reading frame for a 98-amino acid residue protein, and a sequence alignment with known CC chemokines showed high levels of similarity (59-62%) with MCP-1, MCP-3, and eotaxin. MCP-4 cDNA was cloned into Drosophila S2 cells, and the mature protein (residues 24-98) was purified from the conditioned medium. Recombinant MCP-4 induced a potent chemotactic response (EC50 = 2.88 +/- 0.15 nM) and a transient rise in cytosolic calcium concentration in fresh human peripheral blood monocytes but not in neutrophils. Binding studies in monocytes showed that MCP-4 and MCP-3 were very potent in displacing high affinity binding of 125I-MCP-1 (IC50 for MCP-4, MCP-3, and unlabeled MCP-1 of 2.1 +/- 1.4, 0.85-1.6, and 0.7 +/- 0.2 nM respectively), suggesting that all three chemokines interact with the CC chemokine receptor-2 (MCP-1 receptor). This was confirmed in binding studies with Chinese hamster ovary cells, stably transfected with the CC chemokine 2B receptor. Northern blot analysis in extracts of normal human tissues showed expression of mRNA for MCP-4 in small intestine, thymus, and colon, but the level of protein expression was too low to be detected in Western blot analysis. However, expression of MCP-4 protein was demonstrated by immunohistochemistry in human atherosclerotic lesion and found to be associated with endothelial cells and macrophages.


Subject(s)
Monocyte Chemoattractant Proteins/metabolism , Receptors, Chemokine , Receptors, Cytokine/metabolism , Amino Acid Sequence , Animals , Arteriosclerosis/metabolism , Binding, Competitive , Blotting, Western , CHO Cells , Calcium/metabolism , Cloning, Molecular , Cricetinae , Humans , Molecular Sequence Data , Monocyte Chemoattractant Proteins/analysis , Monocyte Chemoattractant Proteins/pharmacology , RNA, Messenger/analysis , Receptors, CCR2 , Recombinant Proteins/biosynthesis
16.
J Med Chem ; 40(12): 1794-807, 1997 Jun 06.
Article in English | MEDLINE | ID: mdl-9191956

ABSTRACT

A novel class of potent and selective non-peptide neurokinin-3 (NK-3) receptor antagonists, featuring the 4-quinolinecarboxamide framework, has been designed based upon chemically diverse NK-1 receptor antagonists. The novel compounds 33-76, prompted by chemical modifications of the prototype 4, have been characterized by binding analysis using a membrane preparation of chinese hamster ovary (CHO) cells expressing the human neurokinin-3 receptors (hNK-3-CHO), and clear structure-activity relationships (SARs) have been established. From SARs, (R)-N-[alpha-(methoxycarbonyl)benzyl]-2-phenylquinoline-4-carboxamide (65, SB 218795, hNK-3-CHO binding Ki = 13 nM) emerged as one of the most potent compounds of this novel class. Selectivity studies versus the other neurokinin receptors (hNK-2-CHO and hNK-1-CHO) revealed that 65 is about 90-fold selective for hNK-3 versus hNK-2 receptors (hNK-2-CHO binding Ki = 1221 nM) and over 7000-fold selective versus hNK-1 receptors (hNK-1-CHO binding Ki = > 100 microM). In vitro functional studies in rabbit isolated iris sphincter muscle preparation demonstrated that 65 is a competitive antagonist of the contractile response induced by the potent and selective NK-3 receptor agonist senktide with a Kb = 43 nM. Overall, the data indicate that 65 is a potent and selective hNK-3 receptor antagonist and a useful lead for further chemical optimization.


Subject(s)
Quinolines/chemical synthesis , Receptors, Neurokinin-3/antagonists & inhibitors , Animals , Binding, Competitive , CHO Cells , Chemical Phenomena , Chemistry, Physical , Cricetinae , Humans , Hydrogen Bonding , Molecular Structure , Muscle Contraction/drug effects , Peptide Fragments/pharmacology , Quinolines/metabolism , Rabbits , Receptors, Neurokinin-3/genetics , Receptors, Neurokinin-3/metabolism , Recombinant Proteins/metabolism , Stereoisomerism , Structure-Activity Relationship , Substance P/analogs & derivatives , Substance P/pharmacology
17.
J Med Chem ; 39(19): 3837-41, 1996 Sep 13.
Article in English | MEDLINE | ID: mdl-8809171

ABSTRACT

An extensive structure-activity study based around the high-affinity leukotriene B4 (LTB4) receptor antagonist SB 201146 (1) led to the identification of (E)-3-[6-[[(2,6-dichlorophenyl)-thio]methyl]-3-(2-phenylethoxy)-2- pyridinyl]-2-propenoic acid (3). This compound displays high affinity for the human neutrophil LTB4 receptor (Ki = 0.78 nM), blocks LTB4-induced Ca2+ mobilization with an IC50 of 6.6 +/- 1.5 nM, and demonstrates potent oral and topical antiinflammatory activity in a murine model of dermal inflammation.


Subject(s)
Acrylates/chemistry , Pyridines/chemistry , Receptors, Leukotriene B4/antagonists & inhibitors , Acrylates/metabolism , Acrylates/pharmacology , Animals , Anti-Inflammatory Agents , Arachidonic Acid , Calcium/metabolism , Cytoplasmic Granules/drug effects , Cytoplasmic Granules/physiology , Humans , Leukotriene B4/pharmacology , Mice , Mice, Inbred BALB C , Molecular Structure , Neutrophils/metabolism , Neutrophils/ultrastructure , Otitis/chemically induced , Otitis/drug therapy , Pyridines/metabolism , Pyridines/pharmacology , Receptors, Leukotriene B4/metabolism , Structure-Activity Relationship
20.
Mol Chem Neuropathol ; 24(1): 13-30, 1995 Jan.
Article in English | MEDLINE | ID: mdl-7755844

ABSTRACT

In previous studies, we have used histological methods to characterize cellular changes, and validated the use of the myeloperoxidase (MPO) activity assay to quantitate increased neutrophil infiltration in ischemic stroke. We also identified increased leukotriene B4 (LTB4) binding sites as a potential marker for neutrophil infiltration into focal ischemic tissue. However, these studies were conducted at only one time-point, 24 h after ischemia. In the present study, we examined the full time-course of MPO activity and LTB4 receptor binding following middle cerebral artery occlusion (MCAO) made permanently (PMCAO) or transiently (160 min followed by reperfusion; TMCAO) in spontaneously hypertensive rats, and compared the results to previously characterized histologic changes in these models. Ischemic and contralateral (control) cortical tissue samples were assayed for MPO (U/g wet wt) and [3H]LTB4 receptor binding (fmol/mg protein). Following PMCAO, MPO activity significantly increased as early as 12 h and continued to increase over the next 5 d (p < 0.05). Following TMCAO, MPO activity was significantly elevated already after only 6 h of reperfusion and also continued to increase over the next 5 d of reperfusion (p < 0.05). LTB4 receptor binding and MPO activity were highly correlated during periods when both measures increased together (i.e., 0.5-5 d; p <0.01). However, by 15 d post-MCAO, LTB4 receptor binding remained elevated after MPO activity levels had returned to normal. This persistent LTB4 binding was associated with the significant gliosis that was characterized previously to persist in these models. The time-course of increased MPO activity and initially increased LTB4 binding post-MCAO correspond very well to our previous histological data that characterized the time-course for leukocyte infiltration under these conditions. Therefore, the increased MPO activity over time was associated with initial neutrophil and later mononuclear cell infiltration into ischemic tissue in these models. In addition, the present studies utilized histochemical analysis to demonstrate peroxidase activity in macrophages within the cerebral infarct following MCAO, thus validating that MPO activity originates from the later infiltrating mononuclear cells in addition to the early infiltrating neutrophils that had been previously characterized in the same manner. TMCAO produces a significantly larger and earlier increase in ischemic cortex MPO activity and a similar later increase in MPO activity compared to PMCAO treatment.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Cerebrovascular Disorders/physiopathology , Ischemic Attack, Transient/physiopathology , Neutrophils/metabolism , Peroxidase/metabolism , Receptors, Leukotriene B4/metabolism , Analysis of Variance , Animals , Cerebral Arteries , Cerebrovascular Disorders/blood , Cerebrovascular Disorders/metabolism , Ischemic Attack, Transient/blood , Ischemic Attack, Transient/metabolism , Leukotriene B4/metabolism , Male , Peroxidase/analysis , Prosencephalon/metabolism , Rats , Rats, Inbred SHR , Receptors, Leukotriene B4/analysis , Reference Values , Reperfusion , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...