Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
IEEE Trans Biomed Eng ; 71(7): 2131-2142, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38315598

ABSTRACT

OBJECTIVE: Implanted Cardioverter Defibrillators (ICDs) induce a large (100 parts per million) inhomogeneous magnetic field in the magnetic resonance imaging (MRI) scanner which cannot be corrected by the scanner's built-in shim coils, leading to significant image artifacts that can make portions of the heart unreadable. To compensate for the field inhomogeneity, an active shim coil capable of countering the field deviation in user-defined regions was designed that must be optimally placed at patient-specific locations. We aim to develop and evaluate an MR-safe robotic solution for automated shim coil positioning. METHODS: We designed and fabricated an MR-safe Cartesian platform that holds the shim coil inside the scanner. The platform consists of three lead screw stages actuated by pneumatic motors, achieving decoupled translations of 140 mm in each direction. The platform is made of plastics and fiberglass with the control electronics placed outside the scanner room, ensuring MR safety. Mechanical modeling was derived to provide design specifications. RESULTS: Experiments show that the platform achieves less than 2 mm average motion error and 0.5 mm repeatability in all directions, and reduces the adjustment time from 5 min to a few seconds. Phantom and animal trials were conducted, showing that the proposed system is able to position a heavy shim coil ( kg) for improved ICD artifact suppression. CONCLUSION: This robotic platform provides an effective method for reliable shim coil positioning inside the scanner. SIGNIFICANCE: This work contributes to improving cardiac MRI quality that could facilitate accurate diagnosis and treatment planning for patients with implanted ICDs.


Subject(s)
Equipment Design , Magnetic Resonance Imaging , Phantoms, Imaging , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/instrumentation , Humans , Heart/diagnostic imaging , Robotics/instrumentation , Defibrillators, Implantable , Artifacts , Reproducibility of Results
2.
Front Med (Lausanne) ; 11: 1225848, 2024.
Article in English | MEDLINE | ID: mdl-38414618

ABSTRACT

Background: In the US, 1.4 million people have implanted ICDs for reducing the risk of sudden death due to ventricular arrhythmias. Cardiac MRI (cMR) is of particular interest in the ICD patient population as cMR is the optimal imaging modality for distinguishing cardiac conditions that predispose to sudden death, and it is the best method to plan and guide therapy. However, all ICDs contain a ferromagnetic transformer which imposes a large inhomogeneous magnetic field in sections of the heart, creating large image voids that can mask important pathology. A shim system was devised to resolve these ICD issues. A shim coil system (CSS) that corrects ICD artifacts over a user-selected Region-of-Interest (ROI), was constructed and validated. Methods: A shim coil was constructed that can project a large magnetic field for distances of ~15 cm. The shim-coil can be positioned safely anywhere within the scanner bore. The CSS includes a cantilevered beam to hold the shim coil. Remotely controlled MR-conditional motors allow 2 mm-accuracy three-dimensional shim-coil position. The shim coil is located above the subjects and the imaging surface-coils. Interaction of the shim coil with the scanner's gradients was eliminated with an amplifier that is in a constant current mode. Coupling with the scanners' radio-frequency (rf) coils, was reduced with shielding, low-pass filters, and cable shield traps. Software, which utilizes magnetic field (B0) mapping of the ICD inhomogeneity, computes the optimal location for the shim coil and its corrective current. ECG gated single- and multiple-cardiac-phase 2D GRE and SSFP sequences, as well as 3D ECG-gated respiratory-navigated IR-GRE (LGE) sequences were tested in phantoms and N = 3 swine with overlaid ICDs. Results: With all cMR sequences, the system reduced artifacts from >100 ppm to <25 ppm inhomogeneity, which permitted imaging of the entire left ventricle in swine with ICD-related voids. Continuously acquired Gradient recalled echo or Steady State Free Precession images were used to interactively adjust the shim current and coil location. Conclusion: The shim system reduced large field inhomogeneities due to implanted ICDs and corrected most ICD-related image distortions. Externally-controlled motorized translation of the shim coil simplified its utilization, supporting an efficient cardiac MRI workflow.

3.
J Appl Clin Med Phys ; 23(9): e13725, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35894782

ABSTRACT

PURPOSE: Contouring clinical target volume (CTV) from medical images is an essential step for radiotherapy (RT) planning. Magnetic resonance imaging (MRI) is used as a standard imaging modality for CTV segmentation in cervical cancer due to its superior soft-tissue contrast. However, the delineation of CTV is challenging as CTV contains microscopic extensions that are not clearly visible even in MR images, resulting in significant contour variability among radiation oncologists depending on their knowledge and experience. In this study, we propose a fully automated deep learning-based method to segment CTV from MR images. METHODS: Our method begins with the bladder segmentation, from which the CTV position is estimated in the axial view. The superior-inferior CTV span is then detected using an Attention U-Net. A CTV-specific region of interest (ROI) is determined, and three-dimensional (3-D) blocks are extracted from the ROI volume. Finally, a CTV segmentation map is computed using a 3-D U-Net from the extracted 3-D blocks. RESULTS: We developed and evaluated our method using 213 MRI scans obtained from 125 patients (183 for training, 30 for test). Our method achieved (mean ± SD) Dice similarity coefficient of 0.85 ± 0.03 and the 95th percentile Hausdorff distance of 3.70 ± 0.35 mm on test cases, outperforming other state-of-the-art methods significantly (p-value < 0.05). Our method also produces an uncertainty map along with the CTV segmentation by employing the Monte Carlo dropout technique to draw physician's attention to the regions with high uncertainty, where careful review and manual correction may be needed. CONCLUSIONS: Experimental results show that the developed method is accurate, fast, and reproducible for contouring CTV from MRI, demonstrating its potential to assist radiation oncologists in alleviating the burden of tedious contouring for RT planning in cervical cancer.


Subject(s)
Radiotherapy Planning, Computer-Assisted , Uterine Cervical Neoplasms , Female , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Radiotherapy Planning, Computer-Assisted/methods , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/radiotherapy
4.
Heart Rhythm ; 19(7): 1165-1173, 2022 07.
Article in English | MEDLINE | ID: mdl-35240311

ABSTRACT

BACKGROUND: External defibrillators are used for arrhythmia cardioversion and for defibrillating during cardiac arrest. During defibrillation, short-duration biphasic pulses cause intense motion due to rapid chest-wall muscle contraction. A reduced motion external defibrillator (RMD) was constructed by integrating a commercial defibrillator with a Tetanizing-waveform generator. A long-duration, low-amplitude, tetanizing waveform slowly stimulated the chest musculature before the biphasic pulse, reducing muscle contraction during the shock. OBJECTIVE: The purpose of this study was to evaluate RMD defibrillation in swine for subject motion during defibrillation pulses and for defibrillation effectiveness. RMD defibrillation can reduce the duration of arrhythmia ablation therapy or simplify cardioversion procedures. METHODS: The tetanizing unit delivered a triangular 1-kHz pulse of 0.25- to 2.0-second duration and 10- to 100-V peak amplitude, subsequently triggering the conventional defibrillator to output standard 1- to 200-J energy biphasic pulses at the next R wave. Forward limb motion was evaluated by measuring peak acceleration and limb work during RMD (tetanizing + biphasic) or biphasic pulse-only waveforms at 10-3-second sampling rate. Seven swine were arrested electrically and subsequently defibrillated. Biphasic pulse-only and RMD defibrillations were repeated 25-35 times per swine, varying tetanizing parameters and biphasic pulse energy. Defibrillation thresholds (DFTs) were established by measuring the minimum energy required to restore sinus rhythm with biphasic pulse-only or RMD defibrillations. RESULTS: Two forward-limb acceleration peaks occurred during both the tetanizing waveform and biphasic pulse, indicating rapid and slower nociceptic (pain sensation) nerve fiber activation. Optimal RMD tetanizing parameters (25-35 V, 0.25- to 0.75-second duration), relative to biphasic pulse-only defibrillations, resulted in 74% ± 10% smaller peak accelerations and 85% ± 10% reduced limb work. DFT energies were identical when comparing RMD to biphasic pulse-only defibrillations. CONCLUSION: Relative to conventional defibrillations, RMD defibrillations maintain rhythm restoration efficiency with drastically reduced subject motion.


Subject(s)
Electric Countershock , Heart Arrest , Animals , Arrhythmias, Cardiac , Defibrillators , Electric Countershock/methods , Swine , Ventricular Fibrillation/therapy
5.
IEEE ASME Trans Mechatron ; 27(1): 407-417, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35185321

ABSTRACT

Brachytherapy is a radiation based treatment that is implemented by precisely placing focused radiation sources into tumors. In advanced interstitial cervical cancer bracytherapy treatment, this is performed by placing a metallic rod ("stylet") inside a hollow cylindrical tube ("catheter") and advancing the pair to the desired target. The stylet is removed once the target is reached, followed by the insertion of radiation sources into the catheter. However, manually advancing an initially straight stylet into the tumor with millimeter spatial accuracy has been a long-standing challenge, which requires multiple insertions and retractions, due to the unforeseen stylet deflection caused by the stiff muscle tissue that is traversed. In this paper, we develop a novel tendon-actuated deflectable stylet equipped with MR active-tracking coils that may enhance brachytherapy treatment outcomes by allowing accurate stylet trajectory control. Herein we present the design concept and fabrication method, followed by the kinematic and mechanics models of the deflectable stylet. The hardware and theoretical models are extensively validated via benchtop and MRI-guided characterization. At insertion depths of 60 mm, benchtop phantom targeting tests provided a targeting error of 1. 23 ± 0. 47 mm, and porcine tissue targeting tests provided a targeting error of 1. 65 ± 0. 64 mm, after only a single insertion. MR-guided experiments indicate that the stylet can be safely and accurately located within the MRI environment.

6.
Magn Reson Med ; 87(6): 2885-2900, 2022 06.
Article in English | MEDLINE | ID: mdl-35142398

ABSTRACT

PURPOSE: Develop a deflectable intracardiac MR imaging (ICMRI) guiding-sheath to accelerate imaging during MR-guided electrophysiological (EP) interventions for radiofrequency (500 kHz) ablation (RFA) of arrythmia. Requirements include imaging at three to five times surface-coil SNR in cardiac chambers, vascular insertion, steerable-active-navigation into cardiac chambers, operation with ablation catheters, and safe levels of MR-induced heating. METHODS: ICMRI's 6 mm outer-diameter (OD) metallic-braided shaft had a 2.6 mm OD internal lumen for ablation-catheter insertion. Miniature-Baluns (MBaluns) on ICMRI's 1 m shaft reduced body-coil-induced heating. Distal section was a folded "star"-shaped imaging-coil mounted on an expandable frame, with an integrated miniature low-noise-amplifier overcoming cable losses. A handle-activated movable-shaft expanded imaging-coil to 35 mm OD for imaging within cardiac-chambers. Four MR-tracking micro-coils enabled navigation and motion-compensation, assuming a tetrahedron-shape when expanded. A second handle-lever enabled distal-tip deflection. ICMRI with a protruding deflectable EP catheter were used for MR-tracked navigation and RFA using a dedicated 3D-slicer user-interface. ICMRI was tested at 3T and 1.5T in swine to evaluate (a) heating, (b) cardiac-chamber access, (c) imaging field-of-view and SNR, and (d) intraprocedural RFA lesion monitoring. RESULTS: The 3T and 1.5T imaging SNR demonstrated >400% SNR boost over a 4 × 4 × 4 cm3 FOV in the heart, relative to body and spine arrays. ICMRI with MBaluns met ASTM/IEC heating limits during navigation. Tip-deflection allowed navigating ICMRI and EP catheter into atria and ventricles. Acute-lesion long-inversion-time-T1-weighted 3D-imaging (TWILITE) ablation-monitoring using ICMRI required 5:30 min, half the time needed with surface arrays alone. CONCLUSION: ICMRI assisted EP-catheter navigation to difficult targets and accelerated RFA monitoring.


Subject(s)
Catheter Ablation , Magnetic Resonance Imaging , Animals , Arrhythmias, Cardiac , Catheter Ablation/methods , Equipment Design , Heart Atria , Magnetic Resonance Imaging/methods , Swine
7.
Med Phys ; 48(11): 7028-7042, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34609756

ABSTRACT

PURPOSE: Brachytherapy combined with external beam radiotherapy (EBRT) is the standard treatment for cervical cancer and has been shown to improve overall survival rates compared to EBRT only. Magnetic resonance (MR) imaging is used for radiotherapy (RT) planning and image guidance due to its excellent soft tissue image contrast. Rapid and accurate segmentation of organs at risk (OAR) is a crucial step in MR image-guided RT. In this paper, we propose a fully automated two-step convolutional neural network (CNN) approach to delineate multiple OARs from T2-weighted (T2W) MR images. METHODS: We employ a coarse-to-fine segmentation strategy. The coarse segmentation step first identifies the approximate boundary of each organ of interest and crops the MR volume around the centroid of organ-specific region of interest (ROI). The cropped ROI volumes are then fed to organ-specific fine segmentation networks to produce detailed segmentation of each organ. A three-dimensional (3-D) U-Net is trained to perform the coarse segmentation. For the fine segmentation, a 3-D Dense U-Net is employed in which a modified 3-D dense block is incorporated into the 3-D U-Net-like network to acquire inter and intra-slice features and improve information flow while reducing computational complexity. Two sets of T2W MR images (221 cases for MR1 and 62 for MR2) were taken with slightly different imaging parameters and used for our network training and test. The network was first trained on MR1 which was a larger sample set. The trained model was then transferred to the MR2 domain via a fine-tuning approach. Active learning strategy was utilized for selecting the most valuable data from MR2 to be included in the adaptation via transfer learning. RESULTS: The proposed method was tested on 20 MR1 and 32 MR2 test sets. Mean ± SD dice similarity coefficients are 0.93 ± 0.04, 0.87 ± 0.03, and 0.80 ± 0.10 on MR1 and 0.94 ± 0.05, 0.88 ± 0.04, and 0.80 ± 0.05 on MR2 for bladder, rectum, and sigmoid, respectively. Hausdorff distances (95th percentile) are 4.18 ± 0.52, 2.54 ± 0.41, and 5.03 ± 1.31 mm on MR1 and 2.89 ± 0.33, 2.24 ± 0.40, and 3.28 ± 1.08 mm on MR2, respectively. The performance of our method is superior to other state-of-the-art segmentation methods. CONCLUSIONS: We proposed a two-step CNN approach for fully automated segmentation of female pelvic MR bladder, rectum, and sigmoid from T2W MR volume. Our experimental results demonstrate that the developed method is accurate, fast, and reproducible, and outperforms alternative state-of-the-art methods for OAR segmentation significantly (p < 0.05).


Subject(s)
Image Processing, Computer-Assisted , Pelvis/diagnostic imaging , Tomography, X-Ray Computed , Female , Humans , Magnetic Resonance Imaging , Neural Networks, Computer , Organs at Risk
8.
Med Phys ; 48(11): 7283-7298, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34520574

ABSTRACT

PURPOSE: To develop an endovaginal MRI array that provides signal enhancement forward into the posterior parametrium and sideways into the vaginal wall, accelerating multiple-contrast detection of residual tumors that survive external beam radiation. The array's enclosure should form an obturator for cervical cancer brachytherapy, allowing integration with MRI-guided catheter placement, CT, and interstitial radiation dose delivery. METHODS: The endovaginal array consisted of forward-looking and sideways-looking components. The forward-looking element imaged the cervix and posterior endometrium, and the sideways-looking elements imaged the vaginal wall. Electromagnetic simulation was performed to optimize the geometry of a forward-looking coil placed on a conductive-metallic substrate, extending the forward penetration above the coil's tip. Thereafter, an endovaginal array with one forward-looking coil and four sideways-looking elements was constructed and tested at 1.5 Tesla in saline and gel phantoms, and three sexually mature swine. Each coil's tuning, matching, and decoupling were optimized theoretically, implemented with electronic circuits, and validated with network-analyzer measurements. The array enclosure emulates a conventional brachytherapy obturator, allowing use of the internal imaging array together with tandem coils and interstitial catheters, as well as use of the enclosure alone during CT and radiation delivery. To evaluate the receive magnetic field ( B 1 - ) spatial profile, the endovaginal array's specific absorption-rate (SAR) distribution was simulated inside a gel ASTM phantom to determine extreme heating locations in advance of a heating test. Heating tests were then performed during high SAR imaging in a gel phantom at the predetermined locations, testing compliance with MRI safety standards. To assess array imaging performance, signal-to-noise-ratios (SNR) were calculated in a saline phantom and in vivo. Swine images were acquired with the endovaginal array combined with the scanner's body and spine arrays. RESULTS: Simulated B 1 - profiles for the forward-looking lobe pattern, obtained while varying several geometric parameters, disclosed that a forward-looking coil placed on a metal-backed substrate could double the effective forward penetration from approximately 25 to ∼40 mm. An endovaginal array, enclosed in an obturator enclosure was then constructed, with all coils tuned, matched, and decoupled. The ASTM gel-phantom SAR test showed that peak local SAR was 1.2 W/kg in the forward-looking coil and 0.3 W/kg in the sideways-looking elements, well within ASTM/FDA/IEC guidelines. A 15-min 4 W/kg average SAR imaging experiment resulted in less than 2o C temperature increase, also within ASTM/FDA/IEC heating limits. In a saline phantom, the forward-looking coil and sideways-looking array's SNR was four to eight times, over a 20-30 mm field-of-view (FOV), and five to eight times, over a 15-25 mm FOV, relative to the spine array's SNR, respectively. In three sexually mature swine, the forward-looking coil provided a 5 + 0.2 SNR enhancement factor within the cervix and posterior endometrium, and the sideways-looking array provided a 4 + 0.2 SNR gain factor in the vaginal wall, relative to the Siemens spine array, demonstrating that the array could significantly reduce imaging time. CONCLUSIONS: Higher SNR gynecological imaging is supported by forward-looking and sideways-looking coils. A forward-looking endovaginal coil for cervix and parametrium imaging was built with optimized metal backing. Array placement within an obturator enhanced integration with the brachytherapy procedure and accelerated imaging for detecting postexternal-beam residual tumors.


Subject(s)
Brachytherapy , Uterine Cervical Neoplasms , Animals , Equipment Design , Female , Humans , Magnetic Resonance Imaging , Phantoms, Imaging , Signal-To-Noise Ratio , Swine , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/radiotherapy
9.
Invest Radiol ; 55(5): 310-317, 2020 05.
Article in English | MEDLINE | ID: mdl-31977600

ABSTRACT

PURPOSE: The aim of this study was to develop a method to delineate the lethally frozen-tissue region (temperature less than -40°C) arising from interventional cryoablation procedures using a short tau inversion-recovery ultrashort echo-time (STIR-UTE) magnetic resonance (MR) imaging sequence. This method could serve as an intraprocedural validation of the completion of tumor ablation, reducing the number of local recurrences after cryoablation procedures. MATERIALS AND METHODS: The method relies on the short T1 and T2* relaxation times of frozen soft tissue. Pointwise Encoding Time with Radial Acquisition, a 3-dimensional UTE sequence with TE = 70 microseconds, was optimized with STIR to null tissues with a T1 of approximately 271 milliseconds, the threshold T1. Because the T1 relaxation time of frozen tissue in the temperature range of -40°C < temperature < -8°C is shorter than the threshold T1 at the 3-tesla magnetic field, tissues in this range should appear hyperintense. The sequence was evaluated in ex vivo frozen tissue, where image intensity and actual tissue temperatures, measured by thermocouples, were correlated. Thereafter, the sequence was evaluated clinically in 12 MR-guided prostate cancer cryoablations, where MR-compatible cryoprobes were used to destroy cancerous tissue and preserve surrounding normal tissue. RESULTS: The ex vivo experiment using a bovine muscle demonstrated that STIR-UTE images showed regions approximately between -40°C and -8°C as hyperintense, with tissues at lower and higher temperatures appearing dark, making it possible to identify the region likely to be above the lethal temperature inside the frozen tissue. In the clinical cases, the STIR-UTE images showed a dark volume centered on the cryoprobe shaft, Vinner, where the temperature is likely below -40°C, surrounded by a doughnut-shaped hyperintense volume, where the temperature is likely between -40°C and -8°C. The hyperintense region was itself surrounded by a dark volume, where the temperature is likely above -8°C, permitting calculation of Vouter. The STIR-UTE frozen-tissue volumes, Vinner and Vouter, appeared significantly smaller than signal voids on turbo spin echo images (P < 1.0 × 10), which are currently used to quantify the frozen-tissue volume ("the iceball"). The ratios of the Vinner and Vouter volumes to the iceball were 0.92 ± 0.08 and 0.29 ± 0.07, respectively. In a single postablation follow-up case, a strong correlation was seen between Vinner and the necrotic volume. CONCLUSIONS: Short tau inversion-recovery ultrashort echo-time MR imaging successfully delineated the area approximately between -40°C and -8°C isotherms in the frozen tissue, demonstrating its potential to monitor the lethal ablation volume during MR-guided cryoablation.


Subject(s)
Cryosurgery/methods , Magnetic Resonance Imaging/methods , Monitoring, Intraoperative/methods , Prostatic Neoplasms/surgery , Animals , Cattle , Humans , Male , Prostatic Neoplasms/diagnosis , Temperature
10.
IEEE Trans Biomed Eng ; 67(6): 1616-1627, 2020 06.
Article in English | MEDLINE | ID: mdl-31535979

ABSTRACT

OBJECTIVE: Cardiovascular interventional devices typically have long metallic braids or backbones to aid in steerability and pushability. However, electromagnetic coupling of metallic-based cardiovascular interventional devices with the radiofrequency (RF) fields present during Magnetic Resonance Imaging (MRI) can make a device unsafe for use in an MRI scanner. We aimed to develop MRI conditional actively-tracked cardiovascular interventional devices by sufficiently attenuating induced currents on the metallic braid/tube and internal-cabling using miniaturized resonant floating RF traps (MBaluns). METHOD: MBaluns were designed for placement at multiple locations along a conducting cardiovascular device to prevent the establishment of standing waves and to dissipate RF-induced energy. The MBaluns were constructed with loosely-wound solenoids to be sensitive to transverse magnetic fields created by both surface currents on the device's metallic backbone and common-mode currents on internal cables. Electromagnetic simulations were used to optimize MBalun parameters. Following optimization, two different MBalun designs were applied to MR-actively-tracked metallic guidewires and metallic-braided electrophysiology ablation catheters. Control-devices were constructed without MBaluns. MBalun performance was validated using network-analyzer quantification of current attenuation, electromagnetic Specific-Absorption-Rate (SAR) analysis, thermal tests during high SAR pulse sequences, and MRI-guided cardiovascular navigation in swine. RESULTS: Electromagnetic SAR simulations resulted in ≈20 dB attenuation at the tip of the wire using six successive MBaluns. Network-analyzer tests confirmed ∼17 dB/MBalun surface-current attenuation. Thermal tests indicated temperature decreases of 5.9 °C in the MBalun-equipped guidewire tip. Both devices allowed rapid vascular navigation resulting from good torquability and MR-Tracking visibility. CONCLUSION: MBaluns increased device diameter by 20%, relative to conventional devices, providing a spatially-efficient means to prevent heating during MRI. SIGNIFICANCE: MBaluns allow use of long metallic components, which improves mechanical performance in active MR-guided interventional devices.


Subject(s)
Magnetic Resonance Imaging , Radio Waves , Animals , Catheters , Electrophysiology , Equipment Design , Phantoms, Imaging , Swine
11.
Magn Reson Med ; 83(4): 1368-1379, 2020 04.
Article in English | MEDLINE | ID: mdl-31565818

ABSTRACT

PURPOSE: To evaluate non-contrast-enhanced MRI of acute radio-frequency ablation (RFA) lesions in the left atrium (LA) and pulmonary vein (PV) ostia. The goal is to provide a method for discrimination between necrotic (permanent) lesions and reversible injury, which is associated with recurrence after treatment of atrial fibrillation. METHODS: Fifteen normal swine underwent RFA around the right-superior PV ostia. Electrical pulmonary vein isolation (PVI) was verified by electro-anatomic mapping (EAM) and pacing. MRI was carried out using a 3D respiratory-gated T1 -weighted long inversion time (TWILITE) sequence without contrast agent. Key settings were: inversion time 700 ms, triggering over 2 cardiac cycles, pixel size 1.1 mm3 . Contrast-enhanced imaging and T2 -weighted imaging were carried out for comparison. Six animals were sacrificed on ablation day for TTC-stained gross pathology, 9 animals were sacrificed after 2-3 mo after repeat EAM and MRI. Image intensity ratio (IIR) was used to measure lesion enhancement, and gross pathology was used to validate image enhancement patterns and compare lesion widths. RESULTS: RFA lesions exhibited unambiguous enhancement in acute TWILITE imaging (IIR = 2.34 ± 0.49 at 1.5T), and the enhancement patterns corresponded well with gross pathology. Lesion widths in MRI correlated well with gross pathology (R2 = 0.84), with slight underestimation by 0.9 ± 0.5 mm. Lesion enhancement subsided chronically. CONCLUSION: TWILITE imaging allowed acute detection of permanent RFA lesions in swine LA and PV ostia, without the need for contrast agent. Lesion enhancement pattern showed good correspondence to gross pathology and was well visualized by volume rendering. This method may provide valuable intra- or post-procedural assessment of RFA treatment.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Pulmonary Veins , Radiofrequency Ablation , Animals , Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/surgery , Heart Atria/diagnostic imaging , Heart Atria/surgery , Magnetic Resonance Imaging , Pulmonary Veins/diagnostic imaging , Pulmonary Veins/surgery , Swine
12.
Semin Radiat Oncol ; 30(1): 16-28, 2020 01.
Article in English | MEDLINE | ID: mdl-31727296

ABSTRACT

The incorporation of magnetic resonance imaging in brachytherapy has resulted in an increased use of interstitial catheters in order to create a comprehensive treatment plan that covers the visualized tumor. However, the insertion with passive, image-guidance requires estimating the location of the tumor during the insertion process, rather than visualizing and inserting the catheters directly to the desired location under active tracking. In order to treat residual disease, multiparametric MR sequences can enhance the information available to the clinician. The precision availed by MR-guided brachytherapy results in substantial improvements in needle positioning, and resulting treatment plans.


Subject(s)
Brachytherapy/methods , Radiotherapy, Image-Guided/methods , Uterine Cervical Neoplasms/radiotherapy , Catheters , Female , Humans , Magnetic Resonance Imaging , Radiotherapy Dosage , Tomography, X-Ray Computed , Uterine Cervical Neoplasms/pathology
13.
JACC Clin Electrophysiol ; 5(1): 91-100, 2019 01.
Article in English | MEDLINE | ID: mdl-30678791

ABSTRACT

OBJECTIVES: This study examined radiofrequency catheter ablation (RFCA) lesions within and around scar by cardiac magnetic resonance (CMR) imaging and histology. BACKGROUND: Substrate modification by RFCA is the cornerstone therapy for ventricular arrhythmias. RFCA in scarred myocardium, however, is not well understood. METHODS: We performed electroanatomic mapping and RFCA in the left ventricles of 8 swine with myocardial infarction. Non-contrast-enhanced T1-weighted (T1w) and contrast-enhanced CMR after RFCA were compared with gross pathology and histology. RESULTS: Of 59 lesions, 17 were in normal myocardium (voltage >1.5 mV), 21 in border zone (0.5 to 1.5 mV), and 21 in scar (<0.5 mV). All RFCA lesions were enhanced in T1w CMR, whereas scar was hypointense, allowing discrimination among normal myocardium, scar, and RFCA lesions. With contrast-enhancement, lesions and scar were similarly enhanced and not distinguishable. Lesion width and depth in T1w CMR correlated with necrosis in pathology (both; r2 = 0.94, p < 0.001). CMR lesion volume was significantly different in normal myocardium, border zone, and scar (median: 397 [interquartile range (IQR): 301 to 474] mm3, 121 [IQR: 87 to 201] mm3, 66 [IQR: 33 to 123] mm3, respectively). RFCA force-time integral, impedance, and voltage changes did not correlate with lesion volume in border zone or scar. Histology showed that ablation necrosis extended into fibrotic tissue in 26 lesions and beyond in 14 lesions. In 7 lesions, necrosis expansion was blocked and redirected by fat. CONCLUSIONS: T1w CMR can selectively enhance necrotic tissue in and around scar and may allow determination of the completeness of ablation intra- and post-procedure. Lesion formation in scar is affected by tissue characteristics, with fibrosis and fat acting as thermal insulators.


Subject(s)
Catheter Ablation , Cicatrix , Electrophysiologic Techniques, Cardiac/methods , Heart Ventricles , Magnetic Resonance Imaging/methods , Animals , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/surgery , Cardiac Imaging Techniques/methods , Cicatrix/diagnostic imaging , Cicatrix/physiopathology , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Myocardial Infarction/physiopathology , Myocardial Infarction/surgery , Swine
14.
Int J Cardiovasc Imaging ; 34(1): 81-95, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28593399

ABSTRACT

We review the utilization of magnetic resonance imaging methods for classifying atrial tissue properties that act as a substrate for common cardiac arrhythmias, such as atrial fibrillation. We then review state-of-the-art methods for mapping this substrate as a predicate for treatment, as well as methods used to ablate the electrical pathways that cause arrhythmia and restore patients to sinus rhythm.


Subject(s)
Arrhythmias, Cardiac/diagnostic imaging , Heart Atria/diagnostic imaging , Magnetic Resonance Imaging , Pulmonary Veins/diagnostic imaging , Action Potentials , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/surgery , Atrial Function , Catheter Ablation , Contrast Media/administration & dosage , Electrophysiologic Techniques, Cardiac , Heart Atria/physiopathology , Heart Atria/surgery , Heart Rate , Humans , Predictive Value of Tests , Pulmonary Veins/physiopathology , Pulmonary Veins/surgery
15.
Brachytherapy ; 16(6): 1159-1168, 2017.
Article in English | MEDLINE | ID: mdl-28823395

ABSTRACT

PURPOSE: To compare clinical outcomes of MR-based versus CT-based high-dose-rate interstitial brachytherapy (ISBT) for vaginal recurrence of endometrioid endometrial cancer (EC). METHODS AND MATERIALS: We reviewed 66 patients with vaginal recurrent EC; 18 had MR-based ISBT on a prospective clinical trial and 48 had CT-based treatment. Kaplan-Meier survival modeling was used to generate estimates for local control (LC), disease-free interval (DFI), and overall survival (OS), and multivariate Cox modeling was used to assess prognostic factors. Toxicities were evaluated and compared. RESULTS: Median followup was 33 months (CT 30 months, MR 35 months). Median cumulative equivalent dose in 2-Gy fractions was 75.5 Gy for MR-ISBT and 73.8 Gy for CT-ISBT (p = 0.58). MR patients were older (p = 0.03) and had larger tumor size (>4 cm vs. ≤ 4 cm) compared to CT patients (p = 0.04). For MR-based versus CT-based ISBT, 3-year KM rate for local control was 100% versus 78% (p = 0.04), DFI was 69% versus 55% (p = 0.1), and OS was 63% versus 75% (p = 0.81), respectively. On multivariate analysis, tumor Grade 3 was associated with worse OS (HR 3.57, 95% CI 1.25, 11.36) in a model with MR-ISBT (HR 0.56, 95% CI 0.16, 1.89). Toxicities were not significantly different between the two modalities. CONCLUSION: Despite worse patient prognostic features, MR-ISBT was associated with a significantly better (100%) 3-year local control, comparable survival, and improved DFI rates compared to CT. Toxicities did not differ compared to CT-ISBT patients. Tumor grade contributed as the most significant predictor for survival. Larger prospective studies are needed to assess the impact of MR-ISBT on survival outcomes.


Subject(s)
Brachytherapy/methods , Endometrial Neoplasms/radiotherapy , Neoplasm Recurrence, Local/radiotherapy , Radiology, Interventional/methods , Vaginal Neoplasms/radiotherapy , Adult , Aged , Aged, 80 and over , Endometrial Neoplasms/diagnostic imaging , Endometrial Neoplasms/pathology , Female , Humans , Imaging, Three-Dimensional/methods , Kaplan-Meier Estimate , Magnetic Resonance Imaging/methods , Middle Aged , Neoplasm Grading , Neoplasm Recurrence, Local/diagnostic imaging , Neoplasm Recurrence, Local/pathology , Neoplasm Staging , Prognosis , Proportional Hazards Models , Prospective Studies , Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Vaginal Neoplasms/diagnostic imaging , Vaginal Neoplasms/pathology
16.
Int J Radiat Oncol Biol Phys ; 99(3): 618-626, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28843373

ABSTRACT

PURPOSE: We designed and built dedicated active magnetic resonance (MR)-tracked (MRTR) stylets. We explored the role of MRTR in a prospective clinical trial. METHODS AND MATERIALS: Eleven gynecologic cancer patients underwent MRTR to rapidly optimize interstitial catheter placement. MRTR catheter tip location and orientation were computed and overlaid on images displayed on in-room monitors at rates of 6 to 16 frames per second. Three modes of actively tracked navigation were analyzed: coarse navigation to the approximate region around the tumor; fine-tuning, bringing the stylets to the desired location; and pullback, with MRTR stylets rapidly withdrawn from within the catheters, providing catheter trajectories for radiation treatment planning (RTP). Catheters with conventional stylets were inserted, forming baseline locations. MRTR stylets were substituted, and catheter navigation was performed by a clinician working inside the MRI bore, using monitor feedback. RESULTS: Coarse navigation allowed repositioning of the MRTR catheters tips by 16 mm (mean), relative to baseline, in 14 ± 5 s/catheter (mean ± standard deviation [SD]). The fine-tuning mode repositioned the catheter tips by a further 12 mm, in 24 ± 17 s/catheter. Pullback mode provided catheter trajectories with RTP point resolution of ∼1.5 mm, in 1 to 9 s/catheter. CONCLUSIONS: MRTR-based navigation resulted in rapid and optimal placement of interstitial brachytherapy catheters. Catheters were repositioned compared with the initial insertion without tracking. In pullback mode, catheter trajectories matched computed tomographic precision, enabling their use for RTP.


Subject(s)
Brachytherapy/instrumentation , Genital Neoplasms, Female/radiotherapy , Magnetic Resonance Imaging, Interventional/instrumentation , Radiotherapy, Image-Guided/methods , Adult , Aged , Aged, 80 and over , Brachytherapy/methods , Catheters , Female , Genital Neoplasms, Female/diagnostic imaging , Genital Neoplasms, Female/pathology , Humans , Middle Aged , Prospective Studies , Radiotherapy, Image-Guided/instrumentation
18.
Gynecol Oncol ; 145(2): 284-290, 2017 05.
Article in English | MEDLINE | ID: mdl-28318644

ABSTRACT

OBJECTIVE: The purpose was to compare local control (LC), overall survival (OS) and dose to the organs at risk (OAR) in women with locally advanced cervical cancer treated with MR-guided versus CT-guided interstitial brachytherapy (BT). METHODS: 56 patients (29 MR, 27 CT) were treated with high-dose-rate (HDR) interstitial BT between 2005-2015. The MR patients had been prospectively enrolled on a Phase II clinical trial. Data were analyzed using Kaplan-Meier (K-M) and Cox proportional hazards statistical modeling in JMP® & R®. RESULTS: Median follow-up time was 19.7months (MR group) and 18.4months (CT group). There were no statistically significant differences in patient age at diagnosis, histology, percent with tumor size >4cm, grade, FIGO stage or lymph node involvement between the groups. Patients in the MR group had more lymphovascular involvement compared to patients in the CT group (p<0.01). When evaluating plans generated, there were no statistically significant differences in median cumulative dose to the high-risk clinical target volume or the OAR. 2-year K-M LC rates for MR-based and CT-based treatments were 96% and 87%, respectively (log-rank p=0.65). At 2years, OS was significantly better in the MR-guided cohort (84% vs. 56%, p=0.036). On multivariate analysis, squamous histology was associated with longer OS (HR 0.23, 95% CI 0.07-0.72) in a model with MR BT (HR 0.35, 95% CI 0.08-1.18). There was no difference in toxicities between CT and MR BT. CONCLUSION: In this population of locally advanced cervical-cancer patients, MR-guided HDR BT resulted in estimated 96% 2-year local control and excellent survival and toxicity rates.


Subject(s)
Brachytherapy/methods , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed/methods , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/radiotherapy , Adult , Aged , Dose-Response Relationship, Radiation , Female , Humans , Kaplan-Meier Estimate , Middle Aged , Proportional Hazards Models , Prospective Studies , Treatment Outcome , Uterine Cervical Neoplasms/pathology
19.
Circ Cardiovasc Imaging ; 9(10)2016 Oct.
Article in English | MEDLINE | ID: mdl-27729363

ABSTRACT

BACKGROUND: Subjects undergoing cardiac arrest within a magnetic resonance imaging (MRI) scanner are currently removed from the bore and then from the MRI suite, before the delivery of cardiopulmonary resuscitation and defibrillation, potentially increasing the risk of mortality. This precludes many higher-risk (acute ischemic and acute stroke) patients from undergoing MRI and MRI-guided intervention. An MRI-conditional cardiac defibrillator should enable scanning with defibrillation pads attached and the generator ON, enabling application of defibrillation within the seconds of MRI after a cardiac event. An MRI-conditional external defibrillator may improve patient acceptance for MRI procedures. METHODS AND RESULTS: A commercial external defibrillator was rendered 1.5 Tesla MRI-conditional by the addition of novel radiofrequency filters between the generator and commercial disposable surface pads. The radiofrequency filters reduced emission into the MRI scanner and prevented cable/surface pad heating during imaging, while preserving all the defibrillator monitoring and delivery functions. Human volunteers were imaged using high specific absorption rate sequences to validate MRI image quality and lack of heating. Swine were electrically fibrillated (n=4) and thereafter defibrillated both outside and inside the MRI bore. MRI image quality was reduced by 0.8 or 1.6 dB, with the generator in monitoring mode and operating on battery or AC power, respectively. Commercial surface pads did not create artifacts deeper than 6 mm below the skin surface. Radiofrequency heating was within US Food and Drug Administration guidelines. Defibrillation was completely successful inside and outside the MRI bore. CONCLUSIONS: A prototype MRI-conditional defibrillation system successfully defibrillated in the MRI without degrading the image quality or increasing the time needed for defibrillation. It can increase patient acceptance for MRI procedures.


Subject(s)
Defibrillators , Electric Countershock/instrumentation , Heart Arrest/therapy , Magnetic Resonance Imaging/adverse effects , Resuscitation/instrumentation , Time-to-Treatment , Animals , Disease Models, Animal , Equipment Design , Heart Arrest/diagnostic imaging , Heart Arrest/etiology , Heart Arrest/physiopathology , Humans , Magnetic Resonance Imaging/instrumentation , Materials Testing , Sus scrofa
20.
Radiother Oncol ; 120(3): 486-492, 2016 09.
Article in English | MEDLINE | ID: mdl-27321150

ABSTRACT

PURPOSE: To compare clinical outcomes of image-based versus non-image-based interstitial brachytherapy (IBBT) for vaginal cancer. METHODS AND MATERIALS: Of 72 patients with vaginal cancer treated with brachytherapy (BT), 47 had image guidance (CT=31, MRI=16) and 25 did not. Kaplan-Meier (KM) estimates were generated for any recurrence, local control (LC), disease-free interval (DFI), and overall survival (OS) and Cox models were used to assess prognostic factors. RESULTS: Median age was 66 and median follow-up time was 24months. Median cumulative EQD2 dose was 80.8Gy in the non-IBBT group and 77Gy in the IBBT group. For non-IBBT versus IBBT, the 2-year KM LC was 71% vs. 93% (p=0.03); DFI was 54% vs. 86% (p=0.04); and OS 52% vs. 82% (p=0.35). On multivariate analysis, IBBT was associated with better DFI (HR 0.24, 95% CI 0.07-0.73). Having any 2 or more of chemotherapy, high-dose-rate (HDR) BT or IBBT (temporally correlated variables) significantly reduced risk of relapse (HR=0.33, 95% CI=0.13-0.83), compared to having none of these factors. CONCLUSION: Over time, the use of chemotherapy, HDR, and IBBT has increased in vaginal cancer. The combination of these factors resulted in the highest rates of disease control. Image-guided brachytherapy for vaginal cancer patients maximizes disease control.


Subject(s)
Brachytherapy/methods , Radiotherapy, Image-Guided/methods , Vaginal Neoplasms/diagnostic imaging , Vaginal Neoplasms/radiotherapy , Aged , Brachytherapy/adverse effects , Female , Humans , Kaplan-Meier Estimate , Magnetic Resonance Imaging/methods , Middle Aged , Neoplasm Recurrence, Local/etiology , Neoplasm Staging , Prognosis , Radiotherapy Dosage , Radiotherapy, Image-Guided/adverse effects , Retrospective Studies , Tomography, X-Ray Computed/methods , Treatment Outcome , Vaginal Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...