Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 900: 165627, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37495128

ABSTRACT

Shrubland ecosystems across Europe face a range of threats including the potential impacts of climate change. Within the INCREASE project, six shrubland ecosystems along a European climatic gradient were exposed to ecosystem-level year-round experimental nighttime warming and long-term, repeated growing season droughts. We quantified the ecosystem level CO2 fluxes, i.e. gross primary productivity (GPP), ecosystem respiration (Reco) and net ecosystem exchange (NEE), in control and treatment plots and compared the treatment effects along the Gaussen aridity index. In general, GPP exhibited higher sensitivity to drought and warming than Reco and was found to be the dominant contributor to changes in overall NEE. Across the climate gradient, northern sites were more likely to have neutral to positive responses of NEE, i.e. increased CO2 uptake, to drought and warming partly due to seasonal rewetting. While an earlier investigation across the same sites showed a good cross-site relationship between soil respiration responses to climate over the Gaussen aridity index, the responses of GPP, Reco and NEE showed a more complex response pattern suggesting that site-specific ecosystem traits, such as different growing season periods and plant species composition, affected the overall response pattern of the ecosystem-level CO2 fluxes. We found that the observed response patterns of GPP and Reco rates at the six sites could be explained well by the hypothesized position of each site on site-specific soil moisture response curves of GPP/Reco fluxes. Such relatively simple, site-specific analyses could help improve our ability to explain observed CO2 flux patterns in larger meta-analyses as well as in larger-scale model upscaling exercises and thereby help improve our ability to project changes in ecosystem CO2 fluxes in response to future climate change.


Subject(s)
Droughts , Ecosystem , Carbon Dioxide/analysis , Carbon Cycle , Soil , Respiration , Seasons
2.
Sci Total Environ ; 857(Pt 3): 159717, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36302436

ABSTRACT

Litter decomposition is a key ecosystem function in forests and varies in response to a range of climatic, edaphic, and local stand characteristics. Disentangling the relative contribution of these factors is challenging, especially along large environmental gradients. In particular, knowledge of the effect of management options, such as tree planting density and species composition, on litter decomposition would be highly valuable in forestry. In this study, we made use of 15 tree diversity experiments spread over eight countries and three continents within the global TreeDivNet network. We evaluated the effects of overstory composition (tree identity, species/mixture composition and species richness), plantation conditions (density and age), and climate (temperature and precipitation) on mass loss (after 3 months and 1 year) of two standardized litters: high-quality green tea and low-quality rooibos tea. Across continents, we found that early-stage decomposition of the low-quality rooibos tea was influenced locally by overstory tree identity. Mass loss of rooibos litter was higher under young gymnosperm overstories compared to angiosperm overstories, but this trend reversed with age of the experiment. Tree species richness did not influence decomposition and explained almost no variation in our multi-continent dataset. Hence, in the young plantations of our study, overstory composition effects on decomposition were mainly driven by tree species identity on decomposer communities and forest microclimates. After 12 months of incubation, mass loss of the high-quality green tea litter was mainly influenced by temperature whereas the low-quality rooibos tea litter decomposition showed stronger relationships with overstory composition and stand age. Our findings highlight that decomposition dynamics are not only affected by climate but also by management options, via litter quality of the identity of planted trees but also by overstory composition and structure.


Subject(s)
Ecosystem , Trees , Trees/chemistry , Plant Leaves , Forests , Tea , Biodiversity , Soil/chemistry
3.
Glob Chang Biol ; 28(21): 6115-6134, 2022 11.
Article in English | MEDLINE | ID: mdl-36069191

ABSTRACT

The degree to which elevated CO2 concentrations (e[CO2 ]) increase the amount of carbon (C) assimilated by vegetation plays a key role in climate change. However, due to the short-term nature of CO2 enrichment experiments and the lack of reconciliation between different ecological scales, the effect of e[CO2 ] on plant biomass stocks remains a major uncertainty in future climate projections. Here, we review the effect of e[CO2 ] on plant biomass across multiple levels of ecological organization, scaling from physiological responses to changes in population-, community-, ecosystem-, and global-scale dynamics. We find that evidence for a sustained biomass response to e[CO2 ] varies across ecological scales, leading to diverging conclusions about the responses of individuals, populations, communities, and ecosystems. While the distinct focus of every scale reveals new mechanisms driving biomass accumulation under e[CO2 ], none of them provides a full picture of all relevant processes. For example, while physiological evidence suggests a possible long-term basis for increased biomass accumulation under e[CO2 ] through sustained photosynthetic stimulation, population-scale evidence indicates that a possible e[CO2 ]-induced increase in mortality rates might potentially outweigh the effect of increases in plant growth rates on biomass levels. Evidence at the global scale may indicate that e[CO2 ] has contributed to increased biomass cover over recent decades, but due to the difficulty to disentangle the effect of e[CO2 ] from a variety of climatic and land-use-related drivers of plant biomass stocks, it remains unclear whether nutrient limitations or other ecological mechanisms operating at finer scales will dampen the e[CO2 ] effect over time. By exploring these discrepancies, we identify key research gaps in our understanding of the effect of e[CO2 ] on plant biomass and highlight the need to integrate knowledge across scales of ecological organization so that large-scale modeling can represent the finer-scale mechanisms needed to constrain our understanding of future terrestrial C storage.


Subject(s)
Carbon Dioxide , Ecosystem , Biomass , Carbon , Carbon Cycle , Humans , Plants
5.
Nat Ecol Evol ; 6(5): 540-545, 2022 05.
Article in English | MEDLINE | ID: mdl-35273367

ABSTRACT

Researchers use both experiments and observations to study the impacts of climate change on ecosystems, but results from these contrasting approaches have not been systematically compared for droughts. Using a meta-analysis and accounting for potential confounding factors, we demonstrate that aboveground biomass responded only about half as much to experimentally imposed drought events as to natural droughts. Our findings indicate that experimental results may underestimate climate change impacts and highlight the need to integrate results across approaches.


Subject(s)
Droughts , Ecosystem , Biomass , Climate Change
6.
PeerJ ; 9: e12254, 2021.
Article in English | MEDLINE | ID: mdl-34703674

ABSTRACT

With the developments in DNA nanoball sequencing technologies and the emergence of new platforms, there is an increasing interest in their performance in comparison with the widely used sequencing-by-synthesis methods. Here, we test the consistency of metabarcoding results from DNBSEQ-G400RS (DNA nanoball sequencing platform by MGI-Tech) and NovaSeq 6000 (sequencing-by-synthesis platform by Illumina) platforms using technical replicates of DNA libraries that consist of COI gene amplicons from 120 soil DNA samples. By subjecting raw sequencing data from both platforms to a uniform bioinformatics processing, we found that the proportion of high-quality reads passing through the filtering steps was similar in both datasets. Per-sample operational taxonomic unit (OTU) and amplicon sequence variant (ASV) richness patterns were highly correlated, but sequencing data from DNBSEQ-G400RS harbored a higher number of OTUs. This may be related to the lower dominance of most common OTUs in DNBSEQ data set (thus revealing higher richness by detecting rare taxa) and/or to a lower effective read quality leading to generation of spurious OTUs. However, there was no statistical difference in the ASV and post-clustered ASV richness between platforms, suggesting that additional denoising step in the ASV workflow had effectively removed the 'noisy' reads. Both OTU-based and ASV-based composition were strongly correlated between the sequencing platforms, with essentially interchangeable results. Therefore, we conclude that DNBSEQ-G400RS and NovaSeq 6000 are both equally efficient high-throughput sequencing platforms to be utilized in studies aiming to apply the metabarcoding approach, but the main benefit of the former is related to lower sequencing cost.

7.
Nat Commun ; 11(1): 3486, 2020 07 13.
Article in English | MEDLINE | ID: mdl-32661354

ABSTRACT

Local biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15-91 years) collected across Europe, using a comprehensive dataset comprising ~6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe.


Subject(s)
Biodiversity , Ecosystem , Climate Change , Europe
8.
Glob Chang Biol ; 25(9): 2970-2977, 2019 09.
Article in English | MEDLINE | ID: mdl-31095816

ABSTRACT

Elevated atmospheric CO2 concentration and climate change may substantially alter soil carbon (C) dynamics, which in turn may impact future climate through feedback cycles. However, only very few field experiments worldwide have combined elevated CO2 (eCO2 ) with both warming and changes in precipitation in order to study the potential combined effects of changes in these fundamental drivers of C cycling in ecosystems. We exposed a temperate heath/grassland to eCO2 , warming, and drought, in all combinations for 8 years. At the end of the study, soil C stocks were on average 0.927 kg C/m2 higher across all treatment combinations with eCO2 compared to ambient CO2 treatments (equal to an increase of 0.120 ± 0.043 kg C m-2  year-1 ), and showed no sign of slowed accumulation over time. However, if observed pretreatment differences in soil C are taken into account, the annual rate of increase caused by eCO2 may be as high as 0.177 ± 0.070 kg C m-2  year-1 . Furthermore, the response to eCO2 was not affected by simultaneous exposure to warming and drought. The robust increase in soil C under eCO2 observed here, even when combined with other climate change factors, suggests that there is continued and strong potential for enhanced soil carbon sequestration in some ecosystems to mitigate increasing atmospheric CO2 concentrations under future climate conditions. The feedback between land C and climate remains one of the largest sources of uncertainty in future climate projections, yet experimental data under simulated future climate, and especially including combined changes, are still scarce. Globally coordinated and distributed experiments with long-term measurements of changes in soil C in response to the three major climate change-related global changes, eCO2 , warming, and changes in precipitation patterns, are, therefore, urgently needed.


Subject(s)
Carbon , Soil , Carbon Dioxide , Climate Change , Droughts , Ecosystem
9.
Sci Total Environ ; 628-629: 1369-1394, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-30045558

ABSTRACT

Through litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litter and methodologies, adding major uncertainty to syntheses, comparisons and meta-analyses across different experiments and sites. In the TeaComposition initiative, the potential litter decomposition is investigated by using standardized substrates (Rooibos and Green tea) for comparison of litter mass loss at 336 sites (ranging from -9 to +26 °C MAT and from 60 to 3113 mm MAP) across different ecosystems. In this study we tested the effect of climate (temperature and moisture), litter type and land-use on early stage decomposition (3 months) across nine biomes. We show that litter quality was the predominant controlling factor in early stage litter decomposition, which explained about 65% of the variability in litter decomposition at a global scale. The effect of climate, on the other hand, was not litter specific and explained <0.5% of the variation for Green tea and 5% for Rooibos tea, and was of significance only under unfavorable decomposition conditions (i.e. xeric versus mesic environments). When the data were aggregated at the biome scale, climate played a significant role on decomposition of both litter types (explaining 64% of the variation for Green tea and 72% for Rooibos tea). No significant effect of land-use on early stage litter decomposition was noted within the temperate biome. Our results indicate that multiple drivers are affecting early stage litter mass loss with litter quality being dominant. In order to be able to quantify the relative importance of the different drivers over time, long-term studies combined with experimental trials are needed.

10.
Glob Chang Biol ; 22(7): 2570-81, 2016 07.
Article in English | MEDLINE | ID: mdl-26946322

ABSTRACT

Well-defined productivity-precipitation relationships of ecosystems are needed as benchmarks for the validation of land models used for future projections. The productivity-precipitation relationship may be studied in two ways: the spatial approach relates differences in productivity to those in precipitation among sites along a precipitation gradient (the spatial fit, with a steeper slope); the temporal approach relates interannual productivity changes to variation in precipitation within sites (the temporal fits, with flatter slopes). Precipitation-reduction experiments in natural ecosystems represent a complement to the fits, because they can reduce precipitation below the natural range and are thus well suited to study potential effects of climate drying. Here, we analyse the effects of dry treatments in eleven multiyear precipitation-manipulation experiments, focusing on changes in the temporal fit. We expected that structural changes in the dry treatments would occur in some experiments, thereby reducing the intercept of the temporal fit and displacing the productivity-precipitation relationship downward the spatial fit. The majority of experiments (72%) showed that dry treatments did not alter the temporal fit. This implies that current temporal fits are to be preferred over the spatial fit to benchmark land-model projections of productivity under future climate within the precipitation ranges covered by the experiments. Moreover, in two experiments, the intercept of the temporal fit unexpectedly increased due to mechanisms that reduced either water loss or nutrient loss. The expected decrease of the intercept was observed in only one experiment, and only when distinguishing between the late and the early phases of the experiment. This implies that we currently do not know at which precipitation-reduction level or at which experimental duration structural changes will start to alter ecosystem productivity. Our study highlights the need for experiments with multiple, including more extreme, dry treatments, to identify the precipitation boundaries within which the current temporal fits remain valid.


Subject(s)
Climate , Ecology/methods , Ecosystem , Rain , Water
11.
Nat Commun ; 6: 6682, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25801187

ABSTRACT

Human domination of the biosphere includes changes to disturbance regimes, which push many ecosystems towards early-successional states. Ecological theory predicts that early-successional ecosystems are more sensitive to perturbations than mature systems, but little evidence supports this relationship for the perturbation of climate change. Here we show that vegetation (abundance, species richness and species composition) across seven European shrublands is quite resistant to moderate experimental warming and drought, and responsiveness is associated with the dynamic state of the ecosystem, with recently disturbed sites responding to treatments. Furthermore, most of these responses are not rapid (2-5 years) but emerge over a longer term (7-14 years). These results suggest that successional state influences the sensitivity of ecosystems to climate change, and that ecosystems recovering from disturbances may be sensitive to even modest climatic changes. A research bias towards undisturbed ecosystems might thus lead to an underestimation of the impacts of climate change.


Subject(s)
Climate Change , Droughts , Ecosystem , Plants , Biodiversity , Europe , Global Warming
12.
Ecol Evol ; 3(6): 1449-60, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23789058

ABSTRACT

The impact of climate change on herbivorous insects can have far-reaching consequences for ecosystem processes. However, experiments investigating the combined effects of multiple climate change drivers on herbivorous insects are scarce. We independently manipulated three climate change drivers (CO2, warming, drought) in a Danish heathland ecosystem. The experiment was established in 2005 as a full factorial split-plot with 6 blocks × 2 levels of CO2 × 2 levels of warming × 2 levels of drought = 48 plots. In 2008, we exposed 432 larvae (n = 9 per plot) of the heather beetle (Lochmaea suturalis Thomson), an important herbivore on heather, to ambient versus elevated drought, temperature, and CO2 (plus all combinations) for 5 weeks. Larval weight and survival were highest under ambient conditions and decreased significantly with the number of climate change drivers. Weight was lowest under the drought treatment, and there was a three-way interaction between time, CO2, and drought. Survival was lowest when drought, warming, and elevated CO2 were combined. Effects of climate change drivers depended on other co-acting factors and were mediated by changes in plant secondary compounds, nitrogen, and water content. Overall, drought was the most important factor for this insect herbivore. Our study shows that weight and survival of insect herbivores may decline under future climate. The complexity of insect herbivore responses increases with the number of combined climate change drivers.

13.
New Phytol ; 194(1): 278-286, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22320387

ABSTRACT

• Nitrogen (N) availability is known to influence ectomycorrhizal fungal components, such as fungal community composition, biomass of root tips and production of mycelia, but effects have never been demonstrated within the same forest. • We measured concurrently the abundance of ectomycorrhizal root tips and the production of external mycelia, and explored the changes in the ectomycorrhizal community composition, across a stand-scale N deposition gradient (from 27 to 43 kg N ha⁻¹ yr⁻¹) at the edge of a spruce forest. The N status was affected along the gradient as shown by a range of N availability indices. • Ectomycorrhizal root tip abundance and mycelial production decreased five and 10-fold, respectively, with increasing N deposition. In addition, the ectomycorrhizal fungal community changed and the species richness decreased. The changes were correlated with the measured indices of N status, in particular N deposition and N leaching. • The relationship between the altered ectomycorrhizal community, root tip abundance and mycelial production is discussed in the context of the N parameters. We suggest that increased N deposition to forests will cause large changes in ectomycorrhizal fungal community structure and functioning, which, in turn, may result in reduced N uptake by roots and fungi, and increased losses of N by leaching.


Subject(s)
Meristem/physiology , Mycelium/physiology , Mycorrhizae/physiology , Nitrogen/metabolism , Picea/microbiology , Picea/physiology , Fungi/physiology , Hydrogen-Ion Concentration , Linear Models , Polymerase Chain Reaction , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...