Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PNAS Nexus ; 2(2): pgad007, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36874278

ABSTRACT

Human monocarboxylate/H+ transporters, MCT, facilitate the transmembrane translocation of vital weak acid metabolites, mainly l-lactate. Tumors exhibiting a Warburg effect rely on MCT activity for l-lactate release. Recently, high-resolution MCT structures revealed binding sites for anticancer drug candidates and the substrate. Three charged residues, Lys 38, Asp 309, and Arg 313 (MCT1 numbering) are essential for substrate binding and initiation of the alternating access conformational change. However, the mechanism by which the proton cosubstrate binds and traverses MCTs remained elusive. Here, we report that substitution of Lys 38 by neutral residues maintained MCT functionality in principle, yet required strongly acidic pH conditions for wildtype-like transport velocity. We determined pH-dependent biophysical transport properties, Michaelis-Menten kinetics, and heavy water effects for MCT1 wildtype and Lys 38 mutants. Our experimental data provide evidence for the bound substrate itself to accept and shuttle a proton from Lys 38 to Asp 309 initiating transport. We have shown before that substrate protonation is a pivotal step in the mechanisms of other MCT-unrelated weak acid translocating proteins. In connection with this study, we conclude that utilization of the proton binding and transfer capabilities of the transporter-bound substrate is probably a universal theme for weak acid anion/H+ cotransport.

2.
Life (Basel) ; 12(1)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35054513

ABSTRACT

(1) Background: Human aquaporin-9 (AQP9) conducts several small uncharged metabolites, such as glycerol, urea, and lactic acid. Certain brain tumors were shown to upregulate AQP9 expression, and the putative increase in lactic acid permeability was assigned to severity. (2) Methods: We expressed AQP9 and human monocarboxylate transporter 1 (MCT1) in yeast to determine the uptake rates and accumulation of radiolabeled l-lactate/l-lactic acid in different external pH conditions. (3) Results: The AQP9-mediated uptake of l-lactic acid was slow compared to MCT1 at neutral and slightly acidic pH, due to low concentrations of the neutral substrate species. At a pH corresponding to the pKa of l-lactic acid, uptake via AQP9 was faster than via MCT1. Substrate accumulation was fundamentally different between AQP9 and MCT1. With MCT1, an equilibrium was reached, at which the intracellular and extracellular l-lactate/H+ concentrations were balanced. Uptake via AQP9 was linear, theoretically yielding orders of magnitude of higher substrate accumulation than MCT1. (4) Conclusions: The selectivity of AQP9 for neutral l-lactic acid establishes an ion trap for l-lactate after dissociation. This may be physiologically relevant if the transmembrane proton gradient is steep, and AQP9 acts as the sole uptake path on at least one side of a polarized cell.

3.
J Biol Chem ; 298(1): 101513, 2022 01.
Article in English | MEDLINE | ID: mdl-34929166

ABSTRACT

The unrelated protein families of the microbial formate-nitrite transporters (FNTs) and aquaporins (AQP) likely adapted the same protein fold through convergent evolution. FNTs facilitate weak acid anion/H+ cotransport, whereas AQP water channels strictly exclude charged substrates including protons. The FNT channel-like transduction pathway bears two lipophilic constriction sites that sandwich a highly conserved histidine residue. Because of lacking experiments, the function of these constrictions is unclear, and the protonation status of the central histidine during substrate transport remains a matter of debate. Here, we introduced constriction-widening mutations into the prototypical FNT from Escherichia coli, FocA, and assayed formate/H+ transport properties, water/solute permeability, and proton conductance. We found that enlargement of these constrictions concomitantly decreased formate/formic acid transport. In contrast to wildtype FocA, the mutants were unable to make use of a transmembrane proton gradient as a driving force. A construct in which both constrictions were eliminated exhibited water permeability, similar to AQPs, although accompanied by a proton conductance. Our data indicate that the lipophilic constrictions mainly act as barriers to isolate the central histidine from the aqueous bulk preventing protonation via proton wires. These results are supportive of an FNT transport model in which the central histidine is uncharged, and weak acid substrate anion protonation occurs in the vestibule regions of the transporter before passing the constrictions.


Subject(s)
Aquaporins , Membrane Transport Proteins , Nitrites , Proton-Coupled Folate Transporter , Anions/chemistry , Anions/metabolism , Aquaporins/chemistry , Aquaporins/metabolism , Escherichia coli/metabolism , Formates/metabolism , Histidine/metabolism , Membrane Transport Proteins/metabolism , Nitrites/metabolism , Permeability , Proton-Coupled Folate Transporter/metabolism , Water/metabolism
4.
Biochimie ; 188: 7-11, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33577940

ABSTRACT

The spectrum of putative and experimentally shown permeants of cellular water and solute channels of the ubiquitous aquaporin family is still increasing. Virtually all AQP substrates, e.g. water, glycerol, urea, hydrogen peroxide, or carbon dioxide, are permanently neutral small molecule compounds. Several reports, however, describe aquaporins that exhibit lactate permeability. Lactate in aqueous solution undergoes a pH-dependent protonation equilibrium with neutral lactic acid, which likely represents the actual substrate form passing the aquaporin channel. Certain aquaporins, however, appear to be better geared for lactate/lactic acid permeability even at low proton availability. Here, we discuss the structural properties of such aquaporins and compare them to the microbial protein family of the formate-nitrite (lactate) transporters that assume the aquaporin fold despite unrelated protein sequences.


Subject(s)
Aquaporins/chemistry , Aquaporins/metabolism , Lactic Acid/metabolism , Acids/chemistry , Anions/chemistry , Anions/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Formates/metabolism , Humans , Hydrogen-Ion Concentration , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Nitrites/metabolism , Permeability , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...