Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Appl Opt ; 63(16): E35-E47, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38856590

ABSTRACT

Shack-Hartmann wavefront sensing is a technique for measuring wavefront aberrations, whose use in adaptive optics relies on fast position tracking of an array of spots. These sensors conventionally use frame-based cameras operating at a fixed sampling rate to report pixel intensities, even though only a fraction of the pixels have signal. Prior in-lab experiments have shown feasibility of event-based cameras for Shack-Hartmann wavefront sensing (SHWFS), asynchronously reporting the spot locations as log intensity changes at a microsecond time scale. In our work, we propose a convolutional neural network (CNN) called event-based wavefront network (EBWFNet) that achieves highly accurate estimation of the spot centroid position in real time. We developed a custom Shack-Hartmann wavefront sensing hardware with a common aperture for the synchronized frame- and event-based cameras so that spot centroid locations computed from the frame-based camera may be used to train/test the event-CNN-based centroid position estimation method in an unsupervised manner. Field testing with this hardware allows us to conclude that the proposed EBWFNet achieves sub-pixel accuracy in real-world scenarios with substantial improvement over the state-of-the-art event-based SHWFS. An ablation study reveals the impact of data processing, CNN components, and training cost function; and an unoptimized MATLAB implementation is shown to run faster than 800 Hz on a single GPU.

2.
Appl Opt ; 61(32): 9439-9448, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36606898

ABSTRACT

Split-step wave-optical simulations are useful for studying optical propagation through random media like atmospheric turbulence. The standard method involves alternating steps of paraxial vacuum propagation and turbulent phase accumulation. We present a semianalytic approach to evaluating the Fresnel diffraction integral with one phase screen between the source and observation planes and another screen in the observation plane. Specifically, we express the first phase screen's transmittance as a Fourier series, which allows us to bring phase screen effects outside of the Fresnel diffraction integral, thereby reducing the numerical computations. This particular setup is useful for simulating astronomical imaging geometries and two-screen laboratory experiments that emulate real turbulence with phase wheels, spatial light modulators, etc. Further, this is a key building block in more general semianalytic split-step simulations that have an arbitrary number of screens. Compared with the standard angular-spectrum approach using the fast Fourier transform, the semianalytic method provides relaxed sampling constraints and an arbitrary computational grid. Also, when a limited number of observation-plane points is evaluated or when many time steps or random draws are used, the semianalytic method can compute faster than the angular-spectrum method.

3.
Opt Express ; 29(16): 25731-25744, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34614896

ABSTRACT

Optical Kerr effects induced by the propagation of high peak-power laser beams through real atmospheres have been a topic of interest to the nonlinear optics community for several decades. This paper proposes a new analytical model for predicting the filamentation/light channel onset distance in real atmospheres based on modulation instability model considerations. The normalized intensity increases exponentially as the beam propagates through the medium. It is hypothesized that this growth can be modeled as a weighted ratio of the Gaussian beam diameter at range to the lateral coherence radius and can be used to set the power ratio for an absorbing, turbulent, nonlinear media to estimate the beam collapse distance. Comparison of onset distance predictions with those found from computer simulation and deduced from field experiments will be presented. In addition, this model will be used with an analytical approach to quantify the expected radius of light channels resulting from self-focusing both with and without the production of a plasma filament. Finally, this paper will describe a set of 1.5-micron, variable focal length USPL field experiments. Comparisons of theoretical radius calculations to measurements from field experiments will be presented.

4.
Appl Opt ; 60(25): G243-G252, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34613260

ABSTRACT

Sharpness metric maximization is a method for reconstructing coherent images that have been aberrated due to distributed-volume turbulence. This method places one or more corrective phase screens in the digital-propagation path that serve to increase overall sharpness of the image. As such, this study uses sharpness metric maximization on 3D irradiances obtained via frequency-diverse digital holography. We vary the number of corrective phase screens in the propagation path and sharpen images of a realistic, extended object via multi-plane sharpness metric maximization. The results indicate that image reconstruction is possible when using fewer corrective screens than aberrating screens, but that image quality increases with a greater number of corrective screens.

5.
Opt Express ; 27(18): 25126-25141, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31510391

ABSTRACT

The propagation of high peak-power laser beams in real atmospheres has been an active research area for a couple of decades. Atmospheric turbulence and loss will induce decreases in the filamentation self-focusing collapse distance as the refractive index structure parameter and volume extinction coefficient, respectively, increase. This paper provides a validated analytical method for predicting the filamentation onset distance in lossy, turbulent, nonlinear media. It is based on a modification of Petrishchev's and Marburger theories. It postulates that the ratio of the peak power to critical power at range in turbulence is modified by a multiplicative, rather than additive, gain factor. Specifically, this new approach modifies the Petrishchev's turbulence equation to create the required multiplicative factor. This is necessary to create the shortened filamentation onset distance that occurs when a laser beam propagates through the cited nonlinear medium. This equation then is used with the Marburger distance and the Karr et al loss equations to yield the filamentation onset distance estimate in lossy, turbulent, nonlinear environment. Theory validation is done against two independent sets of computer simulation results. One comes from the NRL's HELCAP software and the other from MZA's Wave Train modeling software package. This paper also shows that once the zero-turbulence onset distance is set based on link loss, the addition of turbulence creates essentially the same PDFs at similar median distances for each loss case. This result had not been previously reported. This is the first quantitative comparison between closed form equations and computer simulation results characterizing filament generation in a lossy, turbulent, nonlinear medium.

6.
Appl Opt ; 58(25): 6983-6995, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31503672

ABSTRACT

Military applications such as optical space surveillance and civilian applications such as astronomical imaging often require adaptive optics to compensate images of distant objects that are dynamically blurred by atmospheric turbulence. Many factors prevent adaptive optics (AO) from restoring a fully diffraction-limited image quality. Accordingly, restoration methods such as blind deconvolution and contrast enhancement are applied to further improve such imagery. Sometimes, the restoration must take place with low-latency and real-time frame rates because video imagery needs to be viewed promptly. This paper describes a procedure for conducting multi-frame blind deconvolution on experimental AO-compensated imagery in real time. In the procedure, registration and windowing enabled deconvolution, and subsequent enhancements improved the visibility of object features for visual assessment. This process features "multi-frame online blind deconvolution," which is a modification of the previously published "online blind deconvolution." This modified algorithm jointly processes multiple frames simultaneously, making it a true multi-frame, blind deconvolution method. The new method was tested on simulated and experimental imagery. The full procedure was implemented on a workstation with a low-end graphics processing unit, and timing tests were evaluated to estimate execution times.

7.
Opt Express ; 26(7): 8417, 2018 Apr 02.
Article in English | MEDLINE | ID: mdl-29715808

ABSTRACT

We present an erratum regarding the x-axis label in several figures, and one equation citation correction.

8.
Opt Express ; 26(4): 3974-3987, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-29475254

ABSTRACT

The propagation of high peak-power laser beams in real atmospheres will be affected at long range by both linear and nonlinear effects contained therein. Arguably, J. H. Marburger is associated with the mathematical characterization of this phenomenon. This paper provides a validated set of engineering equations for characterizing the self-focusing distance from a laser beam propagating through non-turbulent air with, and without, loss as well as three source configurations: (1) no lens, (2) converging lens and (3) diverging lens. The validation was done against wave-optics simulation results. Some validated equations follow Marburger completely, but others do not, requiring modification of the original theory. Our results can provide a guide for numerical simulations and field experiments.

9.
J Opt Soc Am A Opt Image Sci Vis ; 34(8): 1433-1440, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-29036110

ABSTRACT

We derive a generalized expression for the differential piston phase variance in non-Kolmogorov turbulence. Specifically, our result applies in the case where index of refraction is described by a power-law medium with an exponent between 0 and 1. Kolmogorov assumptions of homogeneity and isotropy are maintained. After some development, our expression is derived using the Mellin-transform techniques and may be generalized to other forms for the three-dimensional index of refraction turbulence power spectrum. This analytical result has two regions of convergence. The separation between these regions is defined by a characteristic time given as the ratio of the mean wind speed and aperture size. By evaluating this expression, we find the differential piston phase variance exhibits a power-law behavior roughly proportional to that of the medium. In addition, we find that piston phase variance decreases with increase in aperture size. We also find that the differential piston phase variance is independent of aperture size as the power law approaches unity.

10.
Opt Lett ; 40(2): 233-6, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25679852

ABSTRACT

A methodology for the two-dimensional simulation of optical wave propagation through atmospheric turbulence is presented. The derivations of common statistical field moments in two dimensions, required for performing and validating simulations, are presented and compared with their traditional three-dimensional counterparts. Wave optics simulations are performed to validate the two-dimensional moments and to demonstrate the utility of performing two-dimensional wave optics simulations so that the results may be scaled to those of computationally prohibitive 3D scenarios. Discussions of the benefits and limitations of two-dimensional atmospheric turbulence simulations are provided throughout.

11.
Appl Opt ; 53(18): 3821-31, 2014 Jun 20.
Article in English | MEDLINE | ID: mdl-24979411

ABSTRACT

Optical wave propagation through long paths of extended turbulence presents unique challenges to adaptive optics (AO) systems. As scintillation and branch points develop in the beacon phase, challenges arise in accurately unwrapping the received wavefront and optimizing the reconstructed phase with respect to branch cut placement on a continuous facesheet deformable mirror. Several applications are currently restricted by these capability limits: laser communication, laser weapons, remote sensing, and ground-based astronomy. This paper presents a set of temporally evolving AO simulations comparing traditional least-squares reconstruction techniques to a complex-exponential reconstructor and several other reconstructors derived from the postprocessing congruence operation. The reconstructors' behavior in closed-loop operation is compared and discussed, providing several insights into the fundamental strengths and limitations of each reconstructor type. This research utilizes a self-referencing interferometer (SRI) as the high-order wavefront sensor, driving a traditional linear control law in conjunction with a cooperative point source beacon. The SRI model includes practical optical considerations and frame-by-frame fiber coupling effects to allow for realistic noise modeling. The "LSPV+7" reconstructor is shown to offer the best performance in terms of Strehl ratio and correction stability-outperforming the traditional least-squares reconstructed system by an average of 120% in the studied scenarios. Utilizing a continuous facesheet deformable mirror, these reconstructors offer significant AO performance improvements in strong turbulence applications without the need for segmented deformable mirrors.

12.
Appl Opt ; 50(24): 4737-45, 2011 Aug 20.
Article in English | MEDLINE | ID: mdl-21857696

ABSTRACT

The propagation of a free-space optical communications signal through atmospheric turbulence experiences random fluctuations in intensity, including signal fades, which negatively impact the performance of the communications link. The gamma-gamma probability density function is commonly used to model the scintillation of a single beam. One proposed method to reduce the occurrence of scintillation-induced fades at the receiver plane involves the use of multiple beams propagating through independent paths, resulting in a sum of independent gamma-gamma random variables. Recently an analytical model for the probability distribution of irradiance from the sum of multiple independent beams was developed. Because truly independent beams are practically impossible to create, we present here a more general but approximate model for the distribution of beams traveling through partially correlated paths. This model compares favorably with wave-optics simulations and highlights the reduced scintillation as the number of transmitted beams is increased. Additionally, a pulse-position modulation scheme is used to reduce the impact of signal fades when they occur. Analytical and simulated results showed significantly improved performance when compared to fixed threshold on/off keying.

13.
Appl Opt ; 50(21): 3907-17, 2011 Jul 20.
Article in English | MEDLINE | ID: mdl-21772374

ABSTRACT

We introduce a new method of estimating the coherence function of a Gaussian-Schell model beam in the inertial subrange of atmospheric turbulence. It is compared with the previously published methods based on either the quadratic approximation of the parabolic equation or an assumed independence between the source's randomness and the atmosphere using effective beam parameters. This new method, which combines the results of the previous two methods to account for any random source/atmospheric coupling, was shown to more accurately estimate both the coherence radius and coherence functional shape across much of the relevant parameter space. The regions of the parameter space where one method or another is the most accurate in estimating the coherence radius are identified along with the maximum absolute estimation error in each region. By selecting the appropriate estimation method for a given set of conditions, the absolute estimation error can generally be kept to less than 5%, with a maximum error of 7%. We also show that the true coherence function is more Gaussian than expected, with the exponential power tending toward 9/5 rather than the theoretical value of 5/3 in very strong turbulence regardless of the nature of the source coherence.

14.
J Opt Soc Am A Opt Image Sci Vis ; 28(6): 1224-38, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21643408

ABSTRACT

We develop analytic equations that describe the mean and normalized variance of the coupling efficiency of gaussian Schell-model beams into single-mode optical fibers. Numerical methods and computer simulations are used to evaluate the accuracy of the various approximations used in this analysis, and, with some insight, empirical compensation is made for the identified shortcomings. The simulations make use of both speckled and nonspeckled beams by employing two different Monte Carlo methods to generate randomly drawn optical fields. While the analytic approximations break down in certain cases, the use of empirical compensation demonstrated accuracies of better than 5% for the mean coupling efficiency in all cases, and generally better than 40% for the coupling efficiency variance. By optimizing the compensation for particular beam characteristics, even higher accuracies can be achieved.

15.
Opt Lett ; 36(2): 286-8, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21263528

ABSTRACT

The gamma-gamma probability density function is commonly used to model the scintillation of a single laser beam propagating through atmospheric turbulence. One method proposed to reduce scintillation at the receiver plane involves the use of multiple channels propagating through independent paths, resulting in a sum of independent gamma-gamma random variables. Recently, a novel approach for an accurate, closed-form approximation for the sum of independent, identically distributed gamma-gamma random variables was introduced by Chatzidiamantis et al. [GLOBECOM 2009--2009 IEEE Global Telecommunications Conference (2009)]. Using this approximation, we present the first analytic model for the distribution of irradiance due to propagating multiple independent beams. This model compares favorably to wave-optics simulations.

16.
Opt Lett ; 35(21): 3601-3, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-21042363

ABSTRACT

An enhanced material-classification algorithm using turbulence-degraded polarimetric imagery is presented. The proposed technique improves upon an existing dielectric/metal material-classification algorithm by providing a more detailed object classification. This is accomplished by redesigning the degree-of-linear-polarization priors in the blind-deconvolution algorithm to include two subclasses of metals--an aluminum group classification (includes aluminum, copper, gold, and silver) and an iron group classification (includes iron, titanium, nickel, and chromium). This new classification provides functional information about the object that is not provided by existing dielectric/metal material classifiers. A discussion of the design of these new degree-of-linear-polarization priors is provided. Experimental results of two painted metal samples are also provided to verify the algorithm's accuracy.

17.
Opt Express ; 18(9): 8948-62, 2010 Apr 26.
Article in English | MEDLINE | ID: mdl-20588740

ABSTRACT

Laser propagation through extended turbulence causes severe beam spread and scintillation. Airborne laser communication systems require special considerations in size, complexity, power, and weight. Rather than using bulky, costly, adaptive optics systems, we reduce the variability of the received signal by integrating a two-transmitter system with an adaptive threshold receiver to average out the deleterious effects of turbulence. In contrast to adaptive optics approaches, systems employing multiple transmitters and adaptive thresholds exhibit performance improvements that are unaffected by turbulence strength. Simulations of this system with on-off-keying (OOK) showed that reducing the scintillation variations with multiple transmitters improves the performance of low-frequency adaptive threshold estimators by 1-3 dB. The combination of multiple transmitters and adaptive thresholding provided at least a 10 dB gain over implementing only transmitter pointing and receiver tilt correction for all three high-Rytov number scenarios. The scenario with a spherical-wave Rytov number R=0.20 enjoyed a 13 dB reduction in the required SNR for BER's between 10(-5) to 10(-3), consistent with the code gain metric. All five scenarios between 0.06 and 0.20 Rytov number improved to within 3 dB of the SNR of the lowest Rytov number scenario.

18.
Opt Express ; 16(14): 10769-85, 2008 Jul 07.
Article in English | MEDLINE | ID: mdl-18607493

ABSTRACT

Airborne laser-communication systems require special considerations in size, complexity, power, and weight. We reduce the variability of the received signal by implementing optimized multiple-transmitter systems to average out the deleterious effects of turbulence. We derive the angular laser-beam separation for various isoplanatic and uncorrelated (anisoplanatic) conditions for the phase and amplitude effects. In most cases and geometries, the angles ordered from largest to smallest are: phase uncorrelated angle (equivalent to the tilt uncorrelated angle), tilt isoplanatic angle, phase isoplanatic angle, scintillation uncorrelated angle, and scintillation correlation angle (Theta(psiind) > Theta(TA) > Theta(0) > Theta(chiind) > Theta(chic)). Multiple beams with angular separations beyond Theta(chic) tend to reduce scintillation variations. Larger separations such as Theta(TA) reduce higher-order phase and scintillation variations and still larger separations beyond Theta(psiind) tend to reduce the higher and lower-order (e.g. tilt) phase and scintillation effects. Simulations show two-transmitter systems reduce bit error rates for ground-to-air, air-to-air, and ground-to-ground scenarios.

19.
Opt Express ; 16(10): 6985-98, 2008 May 12.
Article in English | MEDLINE | ID: mdl-18545402

ABSTRACT

Strong turbulence causes phase discontinuities known as branch points in an optical field. These discontinuities complicate the phase unwrapping necessary to apply phase corrections onto a deformable mirror in an adaptive optics (AO) system. This paper proposes a non-optimal but effective and implementable phase unwrapping method for optical fields containing branch points. This method first applies a least-squares (LS) unwrapper to the field which isolates and unwraps the LS component of the field. Four modulo-2pi-equivalent non-LS components are created by subtracting the LS component from the original field and then restricting the result to differing ranges. 2pi phase jumps known as branch cuts are isolated to the non-LS components and the different non-LS realizations have different branch cut placements. The best placement of branch cuts is determined by finding the non-LS realization with the lowest normalized cut length and adding it to the LS component. The result is an unwrapped field which is modulo-2pi -equivalent to the original field while minimizing the effect of phase cuts on system performance. This variable-range 'phi LS +phi non phi LS' unwrapper, is found to outperform other unwrappers designed to work in the presence of branch points at a reasonable computational burden. The effect of improved unwrapping is demonstrated by comparing the performance of a system using a fixed-range phi 'LS + phi non--LS' realization unwrapper against the variable-range 'phi LS +phi non--LS' unwrapper in a closed-loop simulation. For the 0.5 log-amplitude variance turbulence tested, the system Strehl performance is improved by as much as 41.6 percent at points where fixed-range 'phi LS + phi non phi LS' unwrappers result in particularly poor branch cut placement. This significant improvement in previously poorly performing regions is particularly important for systems such as laser communications which require minimum Strehl ratios to operate successfully.


Subject(s)
Optics and Photonics , Algorithms , Computer Simulation , Data Interpretation, Statistical , Image Interpretation, Computer-Assisted/methods , Lasers , Models, Statistical , Programming Languages , Software
20.
Appl Opt ; 46(13): 2423-33, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17429453

ABSTRACT

Phase-only liquid-crystal spatial light modulators provide a powerful means of wavefront control. With high resolution and diffractive (modulo 2pi) operation, they can accurately represent large-dynamic-range phase maps. As a result, they provide an excellent means of producing electrically controllable, dynamic, and repeatable aberrations. However, proper calibration is critical to achieving accurate phase maps. Several calibration methods from previous literature were considered. With simplicity and accuracy in mind, we selected one method for each type of necessary calibration. We augmented one of the selected methods with a new step that improves its accuracy. After calibrating our spatial light modulator with our preferred methods, we evaluated its ability to produce aberrations in the laboratory. We studied Zernike polynomial aberrations using interferometry and Fourier-transform-plane images, and atmospheric aberrations using a Shack-Hartmann wavefront sensor. These measurements show the closest agreement with theoretical expectations that we have seen to date.

SELECTION OF CITATIONS
SEARCH DETAIL
...