Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Article in English | MEDLINE | ID: mdl-38840310

ABSTRACT

BACKGROUND: Platelet transfusions are frequently used in the intensive care unit (ICU), but current practices including used product types, volumes, doses and effects are unknown. STUDY DESIGN AND METHODS: Sub-study of the inception cohort study 'Thrombocytopenia and Platelet Transfusions in the ICU (PLOT-ICU)', including acutely admitted, adult ICU patients with thrombocytopenia (platelet count <150 × 109/L). The primary outcome was the number of patients receiving platelet transfusion in ICU by product type. Secondary outcomes included platelet transfusion details, platelet increments, bleeding, other transfusions and mortality. RESULTS: Amongst 504 patients with thrombocytopenia from 43 hospitals in 10 countries in Europe and the United States, 20.8% received 565 platelet transfusions; 61.0% received pooled products, 21.9% received apheresis products and 17.1% received both with a median of 2 (interquartile range 1-4) days from admission to first transfusion. The median volume per transfusion was 253 mL (180-308 mL) and pooled products accounted for 59.1% of transfusions, however, this varied across countries. Most centres (73.8%) used fixed dosing (medians ranging from 2.0 to 3.5 × 1011 platelets/transfusion) whilst some (mainly in France) used weight-based dosing (ranging from 0.5 to 0.7 × 1011 platelets per 10 kg body weight). The median platelet count increment for a single prophylactic platelet transfusion was 2 (-1 to 8) × 109/L. Outcomes of patients with thrombocytopenia who did and did not receive platelet transfusions varied. CONCLUSIONS: Among acutely admitted, adult ICU patients with thrombocytopenia, 20.8% received platelet transfusions in ICU of whom most received pooled products, but considerable variation was observed in product type, volumes and doses across countries. Prophylactic platelet transfusions were associated with limited increases in platelet counts.

2.
Nat Biotechnol ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714897

ABSTRACT

A central challenge in developing personalized cancer cell immunotherapy is the identification of tumor-reactive T cell receptors (TCRs). By exploiting the distinct transcriptomic profile of tumor-reactive T cells relative to bystander cells, we build and benchmark TRTpred, an antigen-agnostic in silico predictor of tumor-reactive TCRs. We integrate TRTpred with an avidity predictor to derive a combinatorial algorithm of clinically relevant TCRs for personalized T cell therapy and benchmark it in patient-derived xenografts.

3.
Nat Commun ; 15(1): 3211, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38615042

ABSTRACT

T cells have the ability to eliminate infected and cancer cells and play an essential role in cancer immunotherapy. T cell activation is elicited by the binding of the T cell receptor (TCR) to epitopes displayed on MHC molecules, and the TCR specificity is determined by the sequence of its α and ß chains. Here, we collect and curate a dataset of 17,715 αßTCRs interacting with dozens of class I and class II epitopes. We use this curated data to develop MixTCRpred, an epitope-specific TCR-epitope interaction predictor. MixTCRpred accurately predicts TCRs recognizing several viral and cancer epitopes. MixTCRpred further provides a useful quality control tool for multiplexed single-cell TCR sequencing assays of epitope-specific T cells and pinpoints a substantial fraction of putative contaminants in public databases. Analysis of epitope-specific dual α T cells demonstrates that MixTCRpred can identify α chains mediating epitope recognition. Applying MixTCRpred to TCR repertoires from COVID-19 patients reveals enrichment of clonotypes predicted to bind an immunodominant SARS-CoV-2 epitope. Overall, MixTCRpred provides a robust tool to predict TCRs interacting with specific epitopes and interpret TCR-sequencing data from both bulk and epitope-specific T cells.


Subject(s)
COVID-19 , Deep Learning , Humans , T-Lymphocytes , Epitopes , Immunodominant Epitopes
4.
BMJ Open ; 14(4): e083414, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38631841

ABSTRACT

INTRODUCTION: Physical restraint (PR) is prescribed in patients receiving invasive mechanical ventilation in the intensive care unit (ICU) to avoid unplanned removal of medical devices. However, it is associated with an increased risk of delirium. We hypothesise that a restrictive use of PR, as compared with a systematic use, could reduce the duration of delirium in ICU patients receiving invasive mechanical ventilation. METHODS AND ANALYSIS: The Restrictive use of Restraints and Delirium Duration in ICU (R2D2-ICU) study is a national multicentric, parallel-group, randomised (1:1) open-label, controlled, superiority trial, which will be conducted in 10 ICUs. A total of 422 adult patients requiring invasive mechanical ventilation for an expected duration of at least 48 hours and eligible for prescription of PR will be randomly allocated within 6 hours from intubation to either the restrictive PR use group or the systematic PR use group, until day 14, ICU discharge or death, whichever comes first. In both groups, PR will consist of the use of wrist straps. The primary endpoint will be delirium or coma-free days, defined as the number of days spent alive in the ICU without coma or delirium within the first 14 days after randomisation. Delirium will be assessed using the Confusion Assessment Method-ICU twice daily. Key secondary endpoints will encompass agitation episodes, opioid, propofol, benzodiazepine and antipsychotic drug exposure during the 14-day intervention period, along with a core outcome set of measures evaluated 90 days postrandomisation. ETHICS AND DISSEMINATION: The R2D2-ICU study has been approved by the Comité de Protection des Personnes (CPP) ILE DE FRANCE III-PARIS (CPP19.09.06.37521) on June 10th, 2019). Participant recruitment started on 25 January 2021. Results will be published in international peer-reviewed medical journals and presented at conferences. TRIAL REGISTRATION NUMBER: NCT04273360.


Subject(s)
Antipsychotic Agents , Delirium , Propofol , Adult , Humans , Intensive Care Units , Critical Care/methods , Propofol/therapeutic use , Antipsychotic Agents/therapeutic use , Respiration, Artificial , Delirium/prevention & control , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
5.
Emerg Infect Dis ; 30(2): 345-349, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38270199

ABSTRACT

We studied 50 patients with invasive nocardiosis treated during 2004-2023 in intensive care centers in France and Belgium. Most (65%) died in the intensive care unit or in the year after admission. Nocardia infections should be included in the differential diagnoses for patients in the intensive care setting.


Subject(s)
Critical Illness , Nocardia Infections , Humans , Belgium/epidemiology , France/epidemiology , Critical Care , Nocardia Infections/diagnosis , Nocardia Infections/drug therapy , Nocardia Infections/epidemiology
7.
J Crit Care ; 80: 154498, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38104496

ABSTRACT

Secondary haemophagocytic lymphohistiocytosis (sHLH) proceeds from uncontrolled and inefficient immune activation leading to hyper-inflammation and multi-organ damage. sHLH proceeds from a wide panel of infectious, auto immune and malignant conditions and bears high mortality despite treatment. Literature on sHLH does not mention heart involvement. We sought to describe occurrence of reversible heart dysfunction in the setting of HLH in order to motivate larger prospective studies assessing the causality link between both conditions. We identified 11 cases in our hospital, systematically searched the PubMed database for publications on HLH and heart involvement and reviewed 36 publications with a total of 18 cases. Amongst these 29 cases, 25 presented with myocardial dysfunction and 14 with pericardial effusion. Twenty-six patients required intensive care management, and 14 patients died. This leads us to hypothesize that heart involvement confers worse prognosis to HLH. Formal accountability of HLH in the occurrence of cardiac manifestations is difficult to establish given the numerous differential diagnoses but reversibility of myocardial dysfunction in 14 survivors and results of two necropsies supported it. These data, and the current knowledge on the pathophysiology of both HLH and heart failure lead us to suggest that such a link may exist.


Subject(s)
Lymphohistiocytosis, Hemophagocytic , Neoplasms , Humans , Lymphohistiocytosis, Hemophagocytic/diagnosis , Neoplasms/complications , Prognosis , Prospective Studies , Syndrome
8.
Science ; 382(6676): 1270-1276, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38096385

ABSTRACT

Current HIV vaccines designed to stimulate CD8+ T cells have failed to induce immunologic control upon infection. The functions of vaccine-induced HIV-specific CD8+ T cells were investigated here in detail. Cytotoxic capacity was significantly lower than in HIV controllers and was not a consequence of low frequency or unaccumulated functional cytotoxic proteins. Low cytotoxic capacity was attributable to impaired degranulation in response to the low antigen levels present on HIV-infected targets. The vaccine-induced T cell receptor (TCR) repertoire was polyclonal and transduction of these TCRs conferred the same reduced functions. These results define a mechanism accounting for poor antiviral activity induced by these vaccines and suggest that an effective CD8+ T cell response may require a vaccination strategy that drives further TCR clonal selection.


Subject(s)
AIDS Vaccines , Cell Degranulation , Cytotoxicity, Immunologic , HIV Infections , T-Lymphocytes, Cytotoxic , Humans , AIDS Vaccines/immunology , Clone Cells , HIV Infections/prevention & control , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes, Cytotoxic/immunology , Cell Degranulation/immunology
9.
Intensive Care Med ; 49(11): 1327-1338, 2023 11.
Article in English | MEDLINE | ID: mdl-37812225

ABSTRACT

PURPOSE: Thrombocytopenia (platelet count < 150 × 109/L) is common in intensive care unit (ICU) patients and is likely associated with worse outcomes. In this study we present international contemporary data on thrombocytopenia in ICU patients. METHODS: We conducted a prospective cohort study in adult ICU patients in 52 ICUs across 10 countries. We assessed frequencies of thrombocytopenia, use of platelet transfusions and clinical outcomes including mortality. We evaluated pre-selected potential risk factors for the development of thrombocytopenia during ICU stay and associations between thrombocytopenia at ICU admission and 90-day mortality using pre-specified logistic regression analyses. RESULTS: We analysed 1166 ICU patients; the median age was 63 years and 39.5% were female. Overall, 43.2% (95% confidence interval (CI) 40.4-46.1) had thrombocytopenia; 23.4% (20-26) had thrombocytopenia at ICU admission, and 19.8% (17.6-22.2) developed thrombocytopenia during their ICU stay. Absence of acquired immune deficiency syndrome (AIDS), non-cancer-related immune deficiency, liver failure, male sex, septic shock, and bleeding at ICU admission were associated with the development of thrombocytopenia during ICU stay. Among patients with thrombocytopenia, 22.6% received platelet transfusion(s), and 64.3% of in-ICU transfusions were prophylactic. Patients with thrombocytopenia had higher occurrences of bleeding and death, fewer days alive without the use of life-support, and fewer days alive and out of hospital. Thrombocytopenia at ICU admission was associated with 90-day mortality (adjusted odds ratio 1.7; 95% CI 1.19-2.42). CONCLUSION: Thrombocytopenia occurred in 43% of critically ill patients and was associated with worse outcomes including increased mortality. Platelet transfusions were given to 23% of patients with thrombocytopenia and most were prophylactic.


Subject(s)
Platelet Transfusion , Thrombocytopenia , Adult , Humans , Male , Female , Middle Aged , Platelet Transfusion/adverse effects , Cohort Studies , Prospective Studies , Thrombocytopenia/epidemiology , Thrombocytopenia/etiology , Intensive Care Units , Hemorrhage/etiology , Retrospective Studies
10.
Nat Commun ; 14(1): 3188, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37280206

ABSTRACT

The success of cancer immunotherapy depends in part on the strength of antigen recognition by T cells. Here, we characterize the T cell receptor (TCR) functional (antigen sensitivity) and structural (monomeric pMHC-TCR off-rates) avidities of 371 CD8 T cell clones specific for neoantigens, tumor-associated antigens (TAAs) or viral antigens isolated from tumors or blood of patients and healthy donors. T cells from tumors exhibit stronger functional and structural avidity than their blood counterparts. Relative to TAA, neoantigen-specific T cells are of higher structural avidity and, consistently, are preferentially detected in tumors. Effective tumor infiltration in mice models is associated with high structural avidity and CXCR3 expression. Based on TCR biophysicochemical properties, we derive and apply an in silico model predicting TCR structural avidity and validate the enrichment in high avidity T cells in patients' tumors. These observations indicate a direct relationship between neoantigen recognition, T cell functionality and tumor infiltration. These results delineate a rational approach to identify potent T cells for personalized cancer immunotherapy.


Subject(s)
Melanoma , Animals , Mice , Melanoma/metabolism , CD8-Positive T-Lymphocytes , Receptors, Antigen, T-Cell/metabolism , Antigens, Neoplasm , Clone Cells/metabolism
11.
Cell Rep Methods ; 3(4): 100459, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37159666

ABSTRACT

T cell receptor (TCR) technologies, including repertoire analyses and T cell engineering, are increasingly important in the clinical management of cellular immunity in cancer, transplantation, and other immune diseases. However, sensitive and reliable methods for repertoire analyses and TCR cloning are still lacking. Here, we report on SEQTR, a high-throughput approach to analyze human and mouse repertoires that is more sensitive, reproducible, and accurate as compared with commonly used assays, and thus more reliably captures the complexity of blood and tumor TCR repertoires. We also present a TCR cloning strategy to specifically amplify TCRs from T cell populations. Positioned downstream of single-cell or bulk TCR sequencing, it allows time- and cost-effective discovery, cloning, screening, and engineering of tumor-specific TCRs. Together, these methods will accelerate TCR repertoire analyses in discovery, translational, and clinical settings and permit fast TCR engineering for cellular therapies.


Subject(s)
Neoplasms , Receptors, Antigen, T-Cell , Humans , Animals , Mice , Receptors, Antigen, T-Cell/genetics , Neoplasms/genetics , Biological Assay , Cell Engineering , Cloning, Molecular
12.
Immunity ; 56(6): 1359-1375.e13, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37023751

ABSTRACT

CD4+ T cells orchestrate the adaptive immune response against pathogens and cancer by recognizing epitopes presented on class II major histocompatibility complex (MHC-II) molecules. The high polymorphism of MHC-II genes represents an important hurdle toward accurate prediction and identification of CD4+ T cell epitopes. Here we collected and curated a dataset of 627,013 unique MHC-II ligands identified by mass spectrometry. This enabled us to precisely determine the binding motifs of 88 MHC-II alleles across humans, mice, cattle, and chickens. Analysis of these binding specificities combined with X-ray crystallography refined our understanding of the molecular determinants of MHC-II motifs and revealed a widespread reverse-binding mode in HLA-DP ligands. We then developed a machine-learning framework to accurately predict binding specificities and ligands of any MHC-II allele. This tool improves and expands predictions of CD4+ T cell epitopes and enables us to discover viral and bacterial epitopes following the aforementioned reverse-binding mode.


Subject(s)
Epitopes, T-Lymphocyte , Peptides , Humans , Animals , Mice , Cattle , Ligands , Protein Binding , Chickens/metabolism , Machine Learning , Histocompatibility Antigens Class II , Alleles
13.
iScience ; 26(4): 106288, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-36950115

ABSTRACT

Antigen selection and prioritization represent crucial determinants of vaccines' efficacy. Here, we compare two personalized dendritic cell-based vaccination strategies using whole-tumor lysate or neoantigens. Data in mouse and in cancer patients demonstrate that peptide vaccines using neoantigens predicted on the sole basis of in silico peptide-major histocompatibility complex (MHC) binding affinity underperform relative to whole-tumor-lysate vaccines. In contrast, effective in vitro peptide-MHC binding affinity and peptide immunogenicity significantly improve the prioritization of tumor-rejecting neoepitopes and result in more efficacious vaccines.

14.
Cell Syst ; 14(1): 72-83.e5, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36603583

ABSTRACT

The recognition of pathogen or cancer-specific epitopes by CD8+ T cells is crucial for the clearance of infections and the response to cancer immunotherapy. This process requires epitopes to be presented on class I human leukocyte antigen (HLA-I) molecules and recognized by the T-cell receptor (TCR). Machine learning models capturing these two aspects of immune recognition are key to improve epitope predictions. Here, we assembled a high-quality dataset of naturally presented HLA-I ligands and experimentally verified neo-epitopes. We then integrated these data in a refined computational framework to predict antigen presentation (MixMHCpred2.2) and TCR recognition (PRIME2.0). The depth of our training data and the algorithmic developments resulted in improved predictions of HLA-I ligands and neo-epitopes. Prospectively applying our tools to SARS-CoV-2 proteins revealed several epitopes. TCR sequencing identified a monoclonal response in effector/memory CD8+ T cells against one of these epitopes and cross-reactivity with the homologous peptides from other coronaviruses.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Humans , Epitopes, T-Lymphocyte , Antigen Presentation , SARS-CoV-2 , Ligands , Receptors, Antigen, T-Cell , HLA Antigens
15.
Clin Infect Dis ; 76(2): 351-358, 2023 01 13.
Article in English | MEDLINE | ID: mdl-35974465

ABSTRACT

Hemophagocytic lymphohistiocytosis (HLH) is a rare, life-threatening disorder characterized by an uncontrolled, persistent, hyperimmune response. It can be triggered by an infectious, neoplastic, or autoimmune event. The involvement of cytomegalovirus (CMV) in the onset of HLH is subject to debate, and the epidemiology of CMV-associated HLH (HLH-CMV) remains poorly characterized. We identified 5 cases of HLH-CMV in our hospital, systematically searched the PubMed database for publications on HLH-CMV, and reviewed 57 publications with a total of 67 cases of HLH-CMV. Only 48 patients (71.6%) were immunodeficient, suggesting that HLH-CMV can occur in immunocompetent patients. The major cause of underlying immunodepression (51%) was inflammatory bowel disease (mainly treated with azathioprine). CMV infection was nearly always symptomatic, and lung involvement was frequent (31 cases). Fifty-five patients recovered. Nineteen patients were treated for CMV infection only and had a good outcome, suggesting that antiviral drugs might be the cornerstone of HLH-CMV treatment.


Subject(s)
Cytomegalovirus Infections , Lymphohistiocytosis, Hemophagocytic , Humans , Lymphohistiocytosis, Hemophagocytic/drug therapy , Lymphohistiocytosis, Hemophagocytic/complications , Cytomegalovirus Infections/complications , Cytomegalovirus Infections/drug therapy , Antiviral Agents/therapeutic use , Cytomegalovirus , Azathioprine
16.
Front Immunol ; 13: 973986, 2022.
Article in English | MEDLINE | ID: mdl-36032094

ABSTRACT

Recruitment and activation of CD8 T cells occur through specific triggering of T cell receptor (TCR) by peptide-bound human leucocyte antigen (HLA) ligands. Within the generated trimeric TCR-peptide:HLA complex, the molecular binding affinities between peptide and HLA, and between TCR and peptide:HLA both impact T cell functional outcomes. However, how their individual and combined effects modulate immunogenicity and overall T cell responsiveness has not been investigated systematically. Here, we established two panels of human tumor peptide variants differing in their affinity to HLA. For precise characterization, we developed the "blue peptide assay", an upgraded cell-based approach to measure the peptide:HLA affinity. These peptide variants were then used to investigate the cross-reactivity of tumor antigen-specific CD8 T cell clonotypes derived from blood of cancer patients after vaccination with either the native or an affinity-optimized Melan-A/MART-1 epitope, or isolated from tumor infiltrated lymph nodes (TILNs). Vaccines containing the native tumor epitope generated T cells with better functionality, and superior cross-reactivity against potential low affinity escape epitopes, as compared to T cells induced by vaccines containing an HLA affinity-optimized epitope. Comparatively, Melan-A/MART-1-specific TILN cells displayed functional and cross-reactive profiles that were heterogeneous and clonotype-dependent. Finally, we took advantage of a collection of T cells expressing affinity-optimized NY-ESO-1-specific TCRs to interrogate the individual and combined impact of peptide:HLA and TCR-pHLA affinities on overall CD8 T cell responses. We found profound and distinct effects of both biophysical parameters, with additive contributions and absence of hierarchical dominance. Altogether, the biological impact of peptide:HLA and TCR-pHLA affinities on T cell responses was carefully dissected in two antigenic systems, frequently targeted in human cancer immunotherapy. Our technology and stepwise comparison open new insights into the rational design and selection of vaccine-associated tumor-specific epitopes and highlight the functional and cross-reactivity profiles that endow T cells with best tumor control capacity.


Subject(s)
Neoplasms , Receptors, Antigen, T-Cell , CD8-Positive T-Lymphocytes , Epitopes , Histocompatibility Antigens Class II , Humans , MART-1 Antigen , Peptides
17.
Adv Healthc Mater ; 11(16): e2200169, 2022 08.
Article in English | MEDLINE | ID: mdl-35657072

ABSTRACT

No T cell receptor (TCR) T cell therapies have obtained clinical approval. The lack of strategies capable of selecting and recovering potent T cell candidates may be a contributor to this. Existing protocols for selecting TCR T cell clones for cell therapies such as peptide multimer methods have provided effective measurements on TCR affinities. However, these methods lack the ability to measure the collective strength of intercellular interactions (i.e., cellular avidity) and markers of T cell activation such as immunological synapse formation. This study describes a novel microfluidic fluid shear stress-based approach to identify and recover highly potent T cell clones based on the cellular avidity between living T cells and tumor cells. This approach is capable of probing approximately up to 10 000 T cell-tumor cell interactions per run and can recover potent T cells with up to 100% purity from mixed populations of T cells within 30 min. Markers of cytotoxicity, activation, and avidity persist when recovered high cellular avidity T cells are subsequently exposed to fresh tumor cells. These results demonstrate how microfluidic probing of cellular avidity may fast track the therapeutic T cell selection process and move the authors closer to precision cancer immunotherapy.


Subject(s)
Microfluidics , Receptors, Antigen, T-Cell , Lymphocyte Activation , Peptides , T-Lymphocytes
18.
ACS Sens ; 7(1): 159-165, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35006683

ABSTRACT

We developed an integrated microfluidic cellular processing unit (mCPU) capable of autonomously isolating single cells and performing measurements and on-the-fly analysis of cell-surface dissociation rates, followed by recovery of selected cells. We performed proof-of-concept, high-throughput single-cell experiments characterizing pMHC-TCR interactions on live CD8+ T cells. The mCPU platform analyzed TCR-pMHC dissociation rates with a throughput of 50 cells per hour and hundreds of cells per run, and we demonstrate that cells can be selected, enriched, and easily recovered from the device.


Subject(s)
Microfluidics , Receptors, Antigen, T-Cell , CD8-Positive T-Lymphocytes , Protein Binding
19.
Nat Biotechnol ; 40(5): 656-660, 2022 05.
Article in English | MEDLINE | ID: mdl-34782741

ABSTRACT

The identification of patient-specific tumor antigens is complicated by the low frequency of T cells specific for each tumor antigen. Here we describe NeoScreen, a method that enables the sensitive identification of rare tumor (neo)antigens and of cognate T cell receptors (TCRs) expressed by tumor-infiltrating lymphocytes. T cells transduced with tumor antigen-specific TCRs identified by NeoScreen mediate regression of established tumors in patient-derived xenograft mice.


Subject(s)
Neoplasms , Receptors, Antigen, T-Cell , Animals , Antigens, Neoplasm/genetics , CD8-Positive T-Lymphocytes , Humans , Lymphocytes, Tumor-Infiltrating , Mice , Neoplasms/genetics , Neoplasms/therapy , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes
20.
Cell Rep Med ; 2(2): 100194, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33665637

ABSTRACT

CD8+ T cell recognition of peptide epitopes plays a central role in immune responses against pathogens and tumors. However, the rules that govern which peptides are truly recognized by existing T cell receptors (TCRs) remain poorly understood, precluding accurate predictions of neo-epitopes for cancer immunotherapy. Here, we capitalize on recent (neo-)epitope data to train a predictor of immunogenic epitopes (PRIME), which captures molecular properties of both antigen presentation and TCR recognition. PRIME not only improves prioritization of neo-epitopes but also correlates with T cell potency and unravels biophysical determinants of TCR recognition that we experimentally validate. Analysis of cancer genomics data reveals that recurrent mutations tend to be less frequent in patients where they are predicted to be immunogenic, providing further evidence for immunoediting in human cancer. PRIME will facilitate identification of pathogen epitopes in infectious diseases and neo-epitopes in cancer immunotherapy.


Subject(s)
Antigen Presentation/immunology , Epitopes, T-Lymphocyte/immunology , Neoplasms/immunology , Receptors, Antigen, T-Cell/immunology , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/genetics , Humans , Immunotherapy/methods , Peptides/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...