Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 620: 121750, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35421531

ABSTRACT

3D printing has been explored as an emerging technology for the development of versatile and printable materials for drug delivery. However, the alliance of 3D printing and nanomaterials has, to date, been little explored in pharmaceutics. Herein, a mesoporous silica with nanostructured pores, SBA-15, was used as a drug carrier for triamcinolone acetonide, a hydrophobic drug, with the aim of incorporating the drug formulation in a hydrophilic printable ink. The adsorption of the drug in the SBA-15 pores was confirmed by the decrease in its surface area and pore volume, along with an increase in the apparent aqueous solubility of triamcinolone acetonide, as shown by in vitro release studies. Thereafter, a hydrophilic ink composed of carboxymethyl cellulose containing drug-loaded SBA-15 was formulated and 3D printed as hydrophilic polymeric film using the semisolid extrusion technique (SSE). The 3D printed films showed complete drug release after 12 h, and the presence of the triamcinolone acetonide-loaded SBA-15 improved their in vitro mucoadhesion, suggesting their promising application in oral mucosa treatments. Besides representing an innovative platform to develop water-based mucoadhesive formulations containing a hydrophobic drug, this is the first report proposing the development of SSE 3D printed nanomedicines containing drug-loaded mesoporous silica.


Subject(s)
Carboxymethylcellulose Sodium , Hydrogels , Drug Liberation , Printing, Three-Dimensional , Silicon Dioxide/chemistry , Solubility , Triamcinolone Acetonide , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...