Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Main subject
Publication year range
1.
Science ; 383(6690): 1467-1470, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38547290

ABSTRACT

Similar to the optical diffraction of light passing through a material grating, the Kapitza-Dirac effect occurs when an electron is diffracted by a standing light wave. In its original description, the effect is time independent. Here, we extended the Kapitza-Dirac effect to the time domain. By tracking the spatiotemporal evolution of a pulsed electron wave packet diffracted by a 60-femtosecond (where one femtosecond = 10-15 seconds) standing wave pulse in a pump-probe scheme, we observed time-dependent diffraction patterns. The fringe spacing in the observed pattern differs from that generated by the conventional Kapitza-Dirac effect. By exploiting this time-resolved diffraction scheme, we can access the time evolution of the phase properties of a free electron and potentially image ionic potentials and electronic decoherences.

2.
Sci Adv ; 9(36): eabq8227, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37683006

ABSTRACT

Atoms can form a molecule by sharing their electrons in binding orbitals. These electrons are entangled. Is there a way to break a molecular bond and obtain atoms in their ground state that are spatially separated and still entangled? Here, we show that it is possible to prepare these spatially separated, entangled atoms on femtosecond time scales from single oxygen molecules. The two neutral atoms are entangled in the magnetic quantum number of their valence electrons. In a time-delayed probe step, we use nonadiabatic tunneling, which is a magnetic quantum number-sensitive ionization mechanism. We find a fingerprint of entanglement in the measured ionization probability as a function of the angle between the light's quantization axis and the molecular axis. This establishes a platform for further experiments that harness the time resolution of strong-field experiments to investigate spatially separated, entangled atoms on femtosecond time scales.

3.
Phys Chem Chem Phys ; 24(43): 26458-26465, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36305893

ABSTRACT

X-Ray as well as electron diffraction are powerful tools for structure determination of molecules. Studies on randomly oriented molecules in the gas phase address cases in which molecular crystals cannot be generated or the interaction-free molecular structure is to be addressed. Such studies usually yield partial geometrical information, such as interatomic distances. Here, we present a complementary approach, which allows obtaining insight into the structure, handedness, and even detailed geometrical features of molecules in the gas phase. Our approach combines Coulomb explosion imaging, the information that is encoded in the molecular-frame diffraction pattern of core-shell photoelectrons and ab initio computations. Using a loop-like analysis scheme, we are able to deduce specific molecular coordinates with sensitivity even to the handedness of chiral molecules and the positions of individual atoms, e.g., protons.


Subject(s)
Electrons , Molecular Structure , Stereoisomerism , X-Rays
4.
Phys Rev Lett ; 128(11): 113201, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35363023

ABSTRACT

The influence of the magnetic component of the driving electromagnetic field is often neglected when investigating light-matter interaction. We show that the magnetic component of the light field plays an important role in nonsequential double ionization, which serves as a powerful tool to investigate electron correlation. We investigate the magnetic-field effects in double ionization of xenon atoms driven by near-infrared ultrashort femtosecond laser pulses and find that the mean forward shift of the electron momentum distribution in light-propagation direction agrees well with the classical prediction, where no under-barrier or recollisional nondipole enhancement is observed. By extending classical trajectory Monte Carlo simulations beyond the dipole approximation, we reveal that double ionization proceeds via recollision-induced doubly excited states, followed by subsequent sequential over-barrier field ionization of the two electrons. In agreement with this model, the binding energies do not lead to an additional nondipole forward shift of the electrons. Our findings provide a new method to study electron correlation by exploiting the effect of the magnetic component of the electromagnetic field.

5.
Sci Adv ; 8(12): eabn7386, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35333574

ABSTRACT

The photoelectric effect describes the ejection of an electron upon absorption of one or several photons. The kinetic energy of this electron is determined by the photon energy reduced by the binding energy of the electron and, if strong laser fields are involved, by the ponderomotive potential in addition. It has therefore been widely taken for granted that for atoms and molecules, the photoelectron energy does not depend on the electron's emission direction, but theoretical studies have questioned this since 1990. Here, we provide experimental evidence that the energies of photoelectrons emitted against the light propagation direction are shifted toward higher values, while those electrons that are emitted along the light propagation direction are shifted to lower values. We attribute the energy shift to a nondipole contribution to the ponderomotive potential that is due to the interaction of the moving electrons with the incident photons.

6.
Phys Rev Lett ; 128(2): 023201, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35089761

ABSTRACT

We experimentally and theoretically investigate the influence of the magnetic component of an electromagnetic field on high-order above-threshold ionization of xenon atoms driven by ultrashort femtosecond laser pulses. The nondipole shift of the electron momentum distribution along the light-propagation direction for high energy electrons beyond the 2U_{p} classical cutoff is found to be vastly different from that below this cutoff, where U_{p} is the ponderomotive potential of the driving laser field. A local minimum structure in the momentum dependence of the nondipole shift above the cutoff is identified for the first time. With the help of classical and quantum-orbit analysis, we show that large-angle rescattering of the electrons strongly alters the partitioning of the photon momentum between electron and ion. The sensitivity of the observed nondipole shift to the electronic structure of the target atom is confirmed by three-dimensional time-dependent Schrödinger equation simulations for different model potentials. Our work paves the way toward understanding the physics of extreme light-matter interactions at long wavelengths and high electron kinetic energies.

7.
Nat Commun ; 12(1): 6657, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34789736

ABSTRACT

How long does it take to emit an electron from an atom? This question has intrigued scientists for decades. As such emission times are in the attosecond regime, the advent of attosecond metrology using ultrashort and intense lasers has re-triggered strong interest on the topic from an experimental standpoint. Here, we present an approach to measure such emission delays, which does not require attosecond light pulses, and works without the presence of superimposed infrared laser fields. We instead extract the emission delay from the interference pattern generated as the emitted photoelectron is diffracted by the parent ion's potential. Targeting core electrons in CO, we measured a 2d map of photoelectron emission delays in the molecular frame over a wide range of electron energies. The emission times depend drastically on the photoelectrons' emission directions in the molecular frame and exhibit characteristic changes along the shape resonance of the molecule.

8.
Science ; 370(6514): 339-341, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33060359

ABSTRACT

Photoionization is one of the fundamental light-matter interaction processes in which the absorption of a photon launches the escape of an electron. The time scale of this process poses many open questions. Experiments have found time delays in the attosecond (10-18 seconds) domain between electron ejection from different orbitals, from different electronic bands, or in different directions. Here, we demonstrate that, across a molecular orbital, the electron is not launched at the same time. Rather, the birth time depends on the travel time of the photon across the molecule, which is 247 zeptoseconds (1 zeptosecond = 10-21 seconds) for the average bond length of molecular hydrogen. Using an electron interferometric technique, we resolve this birth time delay between electron emission from the two centers of the hydrogen molecule.

9.
Phys Rev Lett ; 125(16): 163201, 2020 Oct 16.
Article in English | MEDLINE | ID: mdl-33124863

ABSTRACT

We report on a multiparticle coincidence experiment performed at the European X-ray Free-Electron Laser at the Small Quantum Systems instrument using a COLTRIMS reaction microscope. By measuring two ions and two electrons in coincidence, we investigate double core-hole generation in O_{2} molecules in the gas phase. Single-site and two-site double core holes have been identified and their molecular-frame electron angular distributions have been obtained for a breakup of the oxygen molecule into two doubly charged ions. The measured distributions are compared to results of calculations performed within the frozen- and relaxed-core Hartree-Fock approximations.

10.
Phys Rev Lett ; 124(23): 233201, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32603143

ABSTRACT

We experimentally investigate the effects of the linear photon momentum on the momentum distributions of photoions and photoelectrons generated in one-photon ionization in an energy range of 300 eV≤E_{γ}≤40 keV. Our results show that for each ionization event the photon momentum is imparted onto the photoion, which is essentially the system's center of mass. Nevertheless, the mean value of the ion momentum distribution along the light propagation direction is backward-directed by -3/5 times the photon momentum. These results experimentally confirm a 90-year-old prediction.

11.
J Phys Chem Lett ; 11(7): 2457-2463, 2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32149522

ABSTRACT

The simplest molecular dimer, H2-H2, poses a challenge to both experiment and theory as a system with a multidimensional energy surface that supports only a single weakly bound quantum state. Here, we provide a direct experimental image of the structure of hydrogen dimers [(H2)2, H2-D2, and (D2)2] obtained via femtosecond laser-induced Coulomb explosion imaging. Our results indicate that hydrogen dimers are not restricted to a particular geometry but rather occur as a mixture of all possible configurations. The measured intermolecular distance distributions were used to deduce the isotropic intermolecular potential as well as the binding energies of the dimers.

12.
J Phys Chem A ; 123(30): 6491-6495, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31329435

ABSTRACT

The investigation of the photoelectron circular dichroism (PECD) in the strong field regime (800 nm, 6.9 × 1013 W/cm2) on methyloxirane (MOX) reveals a flip of the sign of PECD between different fragmentation channels. This finding is of great importance for future experiments and applications in chemistry or pharmacy using PECD in the strong field regime as analysis method. We suggest that the observed sign change of PECD is not caused by ionization from different orbitals but by effectively selecting differently oriented nonisotropic subsamples of molecules via the fragmentation channel.

13.
Nat Commun ; 10(1): 1, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30602773

ABSTRACT

Wave-particle duality is an inherent peculiarity of the quantum world. The double-slit experiment has been frequently used for understanding different aspects of this fundamental concept. The occurrence of interference rests on the lack of which-way information and on the absence of decoherence mechanisms, which could scramble the wave fronts. Here, we report on the observation of two-center interference in the molecular-frame photoelectron momentum distribution upon ionization of the neon dimer by a strong laser field. Postselection of ions, which are measured in coincidence with electrons, allows choosing the symmetry of the residual ion, leading to observation of both, gerade and ungerade, types of interference.

14.
J Phys Chem Lett ; 8(13): 2780-2786, 2017 Jul 06.
Article in English | MEDLINE | ID: mdl-28582620

ABSTRACT

Most large molecules are chiral in their structure: they exist as two enantiomers, which are mirror images of each other. Whereas the rovibronic sublevels of two enantiomers are almost identical (neglecting a minuscular effect of the weak interaction), it turns out that the photoelectric effect is sensitive to the absolute configuration of the ionized enantiomer. Indeed, photoionization of randomly oriented enantiomers by left or right circularly polarized light results in a slightly different electron flux parallel or antiparallel with respect to the photon propagation direction-an effect termed photoelectron circular dichroism (PECD). Our comprehensive study demonstrates that the origin of PECD can be found in the molecular frame electron emission pattern connecting PECD to other fundamental photophysical effects such as the circular dichroism in angular distributions (CDAD). Accordingly, distinct spatial orientations of a chiral molecule enhance the PECD by a factor of about 10.

15.
Proc Natl Acad Sci U S A ; 113(51): 14651-14655, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27930299

ABSTRACT

Quantum tunneling is a ubiquitous phenomenon in nature and crucial for many technological applications. It allows quantum particles to reach regions in space which are energetically not accessible according to classical mechanics. In this "tunneling region," the particle density is known to decay exponentially. This behavior is universal across all energy scales from nuclear physics to chemistry and solid state systems. Although typically only a small fraction of a particle wavefunction extends into the tunneling region, we present here an extreme quantum system: a gigantic molecule consisting of two helium atoms, with an 80% probability that its two nuclei will be found in this classical forbidden region. This circumstance allows us to directly image the exponentially decaying density of a tunneling particle, which we achieved for over two orders of magnitude. Imaging a tunneling particle shows one of the few features of our world that is truly universal: the probability to find one of the constituents of bound matter far away is never zero but decreases exponentially. The results were obtained by Coulomb explosion imaging using a free electron laser and furthermore yielded He2's binding energy of [Formula: see text] neV, which is in agreement with most recent calculations.

16.
Chemphyschem ; 17(16): 2465-72, 2016 Aug 18.
Article in English | MEDLINE | ID: mdl-27298209

ABSTRACT

The absolute configuration of individual small molecules in the gas phase can be determined directly by light-induced Coulomb explosion imaging (CEI). Herein, this approach is demonstrated for ionization with a single X-ray photon from a synchrotron light source, leading to enhanced efficiency and faster fragmentation as compared to previous experiments with a femtosecond laser. In addition, it is shown that even incomplete fragmentation pathways of individual molecules from a racemic CHBrClF sample can give access to the absolute configuration in CEI. This leads to a significant increase of the applicability of the method as compared to the previously reported complete break-up into atomic ions and can pave the way for routine stereochemical analysis of larger chiral molecules by light-induced CEI.

17.
Science ; 348(6234): 551-5, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25931554

ABSTRACT

Quantum theory dictates that upon weakening the two-body interaction in a three-body system, an infinite number of three-body bound states of a huge spatial extent emerge just before these three-body states become unbound. Three helium (He) atoms have been predicted to form a molecular system that manifests this peculiarity under natural conditions without artificial tuning of the attraction between particles by an external field. Here we report experimental observation of this long-predicted but experimentally elusive Efimov state of (4)He3 by means of Coulomb explosion imaging. We show spatial images of an Efimov state, confirming the predicted size and a typical structure where two atoms are close to each other while the third is far away.

18.
Science ; 341(6150): 1096-100, 2013 Sep 06.
Article in English | MEDLINE | ID: mdl-24009390

ABSTRACT

Bijvoet's method, which makes use of anomalous x-ray diffraction or dispersion, is the standard means of directly determining the absolute (stereochemical) configuration of molecules, but it requires crystalline samples and often proves challenging in structures exclusively comprising light atoms. Herein, we demonstrate a mass spectrometry approach that directly images the absolute configuration of individual molecules in the gas phase by cold target recoil ion momentum spectroscopy after laser ionization-induced Coulomb explosion. This technique is applied to the prototypical chiral molecule bromochlorofluoromethane and the isotopically chiral methane derivative bromodichloromethane.

SELECTION OF CITATIONS
SEARCH DETAIL
...