Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 3): 384-392, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-32830660

ABSTRACT

The crystal structures of two polymorphs of cis-perinone (bisbenzimidazo[2,1-b:1',2'-j]benzo[lmn][3,8]phenanthroline-6,9-dione, Pigment Red 194) were solved from single crystals obtained solvothermally from 1,2-dichlorobenzene or n-butanol at 220°C. Both crystal structures (space group P21/c) derive from stacking of flat molecules arranged due to π-π interaction. The melting points of these two polymorphs are 471°C and 468°C and their respective optical bandgaps are 1.94 eV and 1.71 eV. One of the polymorphs demonstrates drift and hopping mechanisms of electric conductivity, whereas the other one is dominated by the drift conductivity. The direct current (DC) electric conductivity of the samples are 4.77 × 10-13 S m-1 and 6.84 × 10-10 S m-1 at room temperature. The significant difference in DC conductivities can be explained by the dependence of the mobility and concentration of charge carriers on the structure of the samples.

2.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 74(Pt 5): 416-426, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30297547

ABSTRACT

The molecular and solid-state structure of azulene both raise fundamental questions. Therefore, the disordered crystal structure of azulene was re-refined with invariom non-spherical atomic scattering factors from new single-crystal X-ray diffraction data with a resolution of d = 0.45 Å. An unconstrained refinement results in a molecular geometry with Cs symmetry. Refinements constrained to fulfill C2v symmetry, as observed in the gas phase and in high-level ab initio calculations, lead to similar figures of merit and residual densities as unconstrained ones. Such models are consistent with the structures from microwave spectroscopy and electron diffraction, albeit they are not the same. It is shown that for the disorder present in azulene, the invariom model describes valence electron density as successfully as it does for non-disordered structures, although the disorder still leads to high correlations mainly between positional parameters. Lattice-energy minimizations on a variety of ordered model structures using dispersion-corrected DFT calculations reveal that the local deviations from the average structure are small. Despite the molecular dipole moment there is no significant molecular ordering in any spatial direction. A superposition of all ordered model structures leads to a calculated average structure, which explains not only the experimental determined atomic coordinates, but also the apparently unusual experimental anisotropic displacement parameters.

3.
J Pharm Sci ; 98(4): 1476-86, 2009 Apr.
Article in English | MEDLINE | ID: mdl-18752290

ABSTRACT

Solid solutions of felodipine with EUDRAGIT E and EUDRAGIT E/NE were shown to dramatically increase the dissolution rate of felodipine in biorelevant media. Of the two polymer systems, extrudates containing 5% EUDRAGIT NE showed a faster dissolution rate and less recrystallization (no precipitation within 2 h). Although differential scanning calorimetry (DSC) and conventional X-ray powder diffraction (XRPD) were able to verify the amorphous state of the drug after melt extrusion, it was not possible to differentiate the two extrudate compositions further with these methods. We then applied pair distribution function (PDF) analysis to investigate extrudates. It was possible to more closely characterize the solid state of the amorphous extrudates in terms of local structural order: PDF analysis revealed that addition of minor amounts of EUDRAGIT NE to the main component EUDRAGIT E during extrusion changed the local structure of EUDRAGIT E in a nonadditive way. We conclude that local ordering can be important to the release characteristics of extrudates, even when the components are present in the amorphous state.


Subject(s)
Calcium Channel Blockers/chemistry , Excipients/chemistry , Felodipine/chemistry , Methacrylates/chemistry , Polymers/chemistry , Polymethacrylic Acids/chemistry , Calcium Channel Blockers/administration & dosage , Chromatography, High Pressure Liquid , Drug Compounding , Felodipine/administration & dosage , Magnetic Resonance Spectroscopy , Phase Transition , Powder Diffraction , Solubility , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Transition Temperature
4.
Acta Crystallogr B ; 61(Pt 5): 511-27, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16186652

ABSTRACT

Following the interest generated by two previous blind tests of crystal structure prediction (CSP1999 and CSP2001), a third such collaborative project (CSP2004) was hosted by the Cambridge Crystallographic Data Centre. A range of methodologies used in searching for and ranking the likelihood of predicted crystal structures is represented amongst the 18 participating research groups, although most are based on the global minimization of the lattice energy. Initially the participants were given molecular diagrams of three molecules and asked to submit three predictions for the most likely crystal structure of each. Unlike earlier blind tests, no restriction was placed on the possible space group of the target crystal structures. Furthermore, Z' = 2 structures were allowed. Part-way through the test, a partial structure report was discovered for one of the molecules, which could no longer be considered a blind test. Hence, a second molecule from the same category (small, rigid with common atom types) was offered to the participants as a replacement. Success rates within the three submitted predictions were lower than in the previous tests - there was only one successful prediction for any of the three ;blind' molecules. For the ;simplest' rigid molecule, this lack of success is partly due to the observed structure crystallizing with two molecules in the asymmetric unit. As in the 2001 blind test, there was no success in predicting the structure of the flexible molecule. The results highlight the necessity for better energy models, capable of simultaneously describing conformational and packing energies with high accuracy. There is also a need for improvements in search procedures for crystals with more than one independent molecule, as well as for molecules with conformational flexibility. These are necessary requirements for the prediction of possible thermodynamically favoured polymorphs. Which of these are actually realised is also influenced by as yet insufficiently understood processes of nucleation and crystal growth.


Subject(s)
Crystallography, X-Ray/methods , Algorithms , Chemistry/methods , Computer Simulation , Databases, Factual , Databases, Protein , Models, Chemical , Molecular Conformation , Molecular Structure , Monte Carlo Method , Protein Conformation , Protein Folding , Software , Thermodynamics
5.
Acta Crystallogr B ; 56(Pt 4): 697-714, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10944263

ABSTRACT

A collaborative workshop was held in May 1999 at the Cambridge Crystallographic Data Centre to test how well currently available methods of crystal structure prediction perform when given only the atomic connectivity for an organic compound. A blind test was conducted on a selection of four compounds and a wide range of methodologies representing, the principal computer programs currently available were used. There were 11 participants who were allowed to propose at most three structures for each compound. No program gave consistently reliable results. However, seven proposed structures were close to an experimental one and were classified as "correct". One compound occurred in two polymorphs, but only one form was predicted correctly among the calculated structures. The basic problem with lattice energy based methods of crystal structure prediction is that many structures are found within a few kJ mol(-1) of the global minimum. The fine detail of the force-field methodology and parametrization influences the energy ranking within each method. Nevertheless, present methods may be useful in providing a set of structures as possible polymorphs for a given molecular structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...