Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
2.
Nat Commun ; 14(1): 7533, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37985767

ABSTRACT

Peatlands are an important carbon (C) reservoir storing one-third of global soil organic carbon (SOC), but little is known about the fate of these C stocks under climate change. Here, we examine the impact of warming and elevated atmospheric CO2 concentration (eCO2) on the molecular composition of SOC to infer SOC sources (microbe-, plant- and fire-derived) and stability in a boreal peatland. We show that while warming alone decreased plant- and microbe-derived SOC due to enhanced decomposition, warming combined with eCO2 increased plant-derived SOC compounds. We further observed increasing root-derived inputs (suberin) and declining leaf/needle-derived inputs (cutin) into SOC under warming and eCO2. The decline in SOC compounds with warming and gains from new root-derived C under eCO2, suggest that warming and eCO2 may shift peatland C budget towards pools with faster turnover. Together, our results indicate that climate change may increase inputs and enhance decomposition of SOC potentially destabilising C storage in peatlands.

3.
Nature ; 618(7967): 981-985, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225998

ABSTRACT

Soils store more carbon than other terrestrial ecosystems1,2. How soil organic carbon (SOC) forms and persists remains uncertain1,3, which makes it challenging to understand how it will respond to climatic change3,4. It has been suggested that soil microorganisms play an important role in SOC formation, preservation and loss5-7. Although microorganisms affect the accumulation and loss of soil organic matter through many pathways4,6,8-11, microbial carbon use efficiency (CUE) is an integrative metric that can capture the balance of these processes12,13. Although CUE has the potential to act as a predictor of variation in SOC storage, the role of CUE in SOC persistence remains unresolved7,14,15. Here we examine the relationship between CUE and the preservation of SOC, and interactions with climate, vegetation and edaphic properties, using a combination of global-scale datasets, a microbial-process explicit model, data assimilation, deep learning and meta-analysis. We find that CUE is at least four times as important as other evaluated factors, such as carbon input, decomposition or vertical transport, in determining SOC storage and its spatial variation across the globe. In addition, CUE shows a positive correlation with SOC content. Our findings point to microbial CUE as a major determinant of global SOC storage. Understanding the microbial processes underlying CUE and their environmental dependence may help the prediction of SOC feedback to a changing climate.


Subject(s)
Carbon Sequestration , Carbon , Ecosystem , Soil Microbiology , Soil , Carbon/analysis , Carbon/metabolism , Climate Change , Plants , Soil/chemistry , Datasets as Topic , Deep Learning
4.
Nat Geosci ; 16(4): 344-348, 2023.
Article in English | MEDLINE | ID: mdl-37064011

ABSTRACT

Subsoils contain more than half of soil organic carbon (SOC) and are expected to experience rapid warming in the coming decades. Yet our understanding of the stability of this vast carbon pool under global warming is uncertain. In particular, the fate of complex molecular structures (polymers) remains debated. Here we show that 4.5 years of whole-soil warming (+4 °C) resulted in less polymeric SOC (sum of specific polymers contributing to SOC) in the warmed subsoil (20-90 cm) relative to control, with no detectable change in topsoil. Warming stimulated the subsoil loss of lignin phenols (-17 ± 0%) derived from woody plant biomass, hydrolysable lipids cutin and suberin, derived from leaf and woody plant biomass (-28 ± 3%), and pyrogenic carbon (-37 ± 8%) produced during incomplete combustion. Given that these compounds have been proposed for long-term carbon sequestration, it is notable that they were rapidly lost in warmed soils. We conclude that complex polymeric carbon in subsoil is vulnerable to decomposition and propose that molecular structure alone may not protect compounds from degradation under future warming.

5.
Glob Chang Biol ; 28(3): 883-898, 2022 02.
Article in English | MEDLINE | ID: mdl-34689380

ABSTRACT

Rising temperatures have the potential to directly affect carbon cycling in peatlands by enhancing organic matter (OM) decomposition, contributing to the release of CO2 and CH4 to the atmosphere. In turn, increasing atmospheric CO2 concentration may stimulate photosynthesis, potentially increasing plant litter inputs belowground and transferring carbon from the atmosphere into terrestrial ecosystems. Key questions remain about the magnitude and rate of these interacting and opposing environmental change drivers. Here, we assess the incorporation and degradation of plant- and microbe-derived OM in an ombrotrophic peatland after 4 years of whole-ecosystem warming (+0, +2.25, +4.5, +6.75 and +9°C) and two years of elevated CO2  manipulation (500 ppm above ambient). We show that OM molecular composition was substantially altered in the aerobic acrotelm, highlighting the sensitivity of acrotelm carbon to rising temperatures and atmospheric CO2 concentration. While warming accelerated OM decomposition under ambient CO2 , new carbon incorporation into peat increased in warming × elevated CO2 treatments for both plant- and microbe-derived OM. Using the isotopic signature of the applied CO2 enrichment as a label for recently photosynthesized OM, our data demonstrate that new plant inputs have been rapidly incorporated into peat carbon. Our results suggest that under current hydrological conditions, rising temperatures and atmospheric CO2  levels will likely offset each other in boreal peatlands.


Subject(s)
Carbon Dioxide , Ecosystem , Atmosphere , Carbon Cycle , Carbon Dioxide/analysis , Soil
6.
J Chem Phys ; 154(21): 214105, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34240962

ABSTRACT

Benchmarking calculations on excited states of models of phenylalanine protein chains are presented to assess the ability of alternative methods to the standard and most commonly used multiconfigurational wave function-based method, the complete active space self-consistent field (CASSCF), in recovering the non-dynamical correlation for systems that become not affordable by the CASSCF. The exploration of larger active spaces beyond the CASSCF limit is benchmarked through three strategies based on the reduction in the number of determinants: the restricted active space self-consistent field, the generalized active space self-consistent field (GASSCF), and the occupation-restricted multiple active space (ORMAS) schemes. The remaining dynamic correlation effects are then added by the complete active space second-order perturbation theory and by the multireference difference dedicated configuration interaction methods. In parallel, the approximate second-order coupled cluster (CC2), already proven to be successful for small building blocks of model proteins in one of our previous works [Ben Amor et al., J. Chem. Phys. 148, 184105 (2018)], is investigated to assess its performances for larger systems. Among the different alternative strategies to CASSCF, our results highlight the greatest efficiency of the GASSCF and ORMAS schemes in the systematic reduction of the configuration interaction expansion without loss of accuracy in both nature and excitation energies of both singlet ππ* and nπ* CO excited states with respect to the equivalent CASSCF calculations. Guidelines for an optimum applicability of this scheme to systems requiring active spaces beyond the complete active space limit are then proposed. Finally, the extension of the CC2 method to such large systems without loss of accuracy is demonstrated, highlighting the great potential of this method to treat accurately excited states, mainly single reference, of very large systems.


Subject(s)
Density Functional Theory , Proteins/chemistry , Cluster Analysis , Models, Molecular
7.
Sci Adv ; 7(21)2021 May.
Article in English | MEDLINE | ID: mdl-34020943

ABSTRACT

Subsoils below 20 cm are an important reservoir in the global carbon cycle, but little is known about their vulnerability under climate change. We measured a statistically significant loss of subsoil carbon (-33 ± 11%) in warmed plots of a conifer forest after 4.5 years of whole-soil warming (4°C). The loss of subsoil carbon was primarily from unprotected particulate organic matter. Warming also stimulated a sustained 30 ± 4% increase in soil CO2 efflux due to increased CO2 production through the whole-soil profile. The observed in situ decline in subsoil carbon stocks with warming is now definitive evidence of a positive soil carbon-climate feedback, which could not be concluded based on increases in CO2 effluxes alone. The high sensitivity of subsoil carbon and the different responses of soil organic matter pools suggest that models must represent these heterogeneous soil dynamics to accurately predict future feedbacks to warming.

8.
Sci Rep ; 10(1): 12610, 2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32699291

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
J Chem Phys ; 152(15): 154102, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32321259

ABSTRACT

A discussion of many of the recently implemented features of GAMESS (General Atomic and Molecular Electronic Structure System) and LibCChem (the C++ CPU/GPU library associated with GAMESS) is presented. These features include fragmentation methods such as the fragment molecular orbital, effective fragment potential and effective fragment molecular orbital methods, hybrid MPI/OpenMP approaches to Hartree-Fock, and resolution of the identity second order perturbation theory. Many new coupled cluster theory methods have been implemented in GAMESS, as have multiple levels of density functional/tight binding theory. The role of accelerators, especially graphical processing units, is discussed in the context of the new features of LibCChem, as it is the associated problem of power consumption as the power of computers increases dramatically. The process by which a complex program suite such as GAMESS is maintained and developed is considered. Future developments are briefly summarized.

10.
Sci Rep ; 9(1): 18030, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31792257

ABSTRACT

Soil organic carbon (SOC) dynamics represent a persisting uncertainty in our understanding of the global carbon cycle. SOC storage is strongly linked to plant inputs via the formation of soil organic matter, but soil geochemistry also plays a critical role. In tropical soils with rapid SOC turnover, the association of organic matter with soil minerals is particularly important for stabilising SOC but projected increases in tropical forest productivity could trigger feedbacks that stimulate the release of stored SOC. Here, we demonstrate limited additional SOC storage after 13-15 years of experimentally doubled aboveground litter inputs in a lowland tropical forest. We combined biological, physical, and chemical methods to characterise SOC along a gradient of bioavailability. After 13 years of monthly litter addition treatments, most of the additional SOC was readily bioavailable and we observed no increase in mineral-associated SOC. Importantly, SOC with weak association to soil minerals declined in response to long-term litter addition, suggesting that increased plant inputs could modify the formation of organo-mineral complexes in tropical soils. Hence, we demonstrate the limited capacity of tropical soils to sequester additional C inputs and provide insights into potential underlying mechanisms.

11.
Nat Commun ; 10(1): 4018, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31488815

ABSTRACT

Riverine dissolved organic carbon (DOC) contains charcoal byproducts, termed black carbon (BC). To determine the significance of BC as a sink of atmospheric CO2 and reconcile budgets, the sources and fate of this large, slow-cycling and elusive carbon pool must be constrained. The Amazon River is a significant part of global BC cycling because it exports an order of magnitude more DOC, and thus dissolved BC (DBC), than any other river. We report spatially resolved DBC quantity and radiocarbon (Δ14C) measurements, paired with molecular-level characterization of dissolved organic matter from the Amazon River and tributaries during low discharge. The proportion of BC-like polycyclic aromatic structures decreases downstream, but marked spatial variability in abundance and Δ14C values of DBC molecular markers imply dynamic sources and cycling in a manner that is incongruent with bulk DOC. We estimate a flux from the Amazon River of 1.9-2.7 Tg DBC yr-1 that is composed of predominately young DBC, suggesting that loss processes of modern DBC are important.

12.
J Phys Chem A ; 123(25): 5242-5248, 2019 Jun 27.
Article in English | MEDLINE | ID: mdl-31199630

ABSTRACT

Full-valence relativistic accurate atomic minimal basis set (AAMBS) orbitals are developed for the sixth-row elements from cesium to radon, including the lanthanides. Saturated primitive atomic basis sets are developed and subsequently used to form the AAMBS orbitals. By virtue of the use of a saturated basis, properties computed based on the AAMBS orbitals are basis set independent. In molecules, the AAMBS orbitals can be used to construct valence virtual orbitals (VVOs) that provide chemically meaningful ab initio lowest unoccupied molecular orbitals (LUMOs) with basis set independent orbital energies. The optimized occupied molecular orbitals complemented with the VVOs form a set of full-valence molecular orbitals. They can be transformed into a set of oriented quasi-atomic orbitals (QUAOs) that provide information on intramolecular bonding via an intrinsic density analysis. In the present work, the development of the AAMBS for the sixth row is presented.

13.
J Phys Chem A ; 123(25): 5249-5256, 2019 Jun 27.
Article in English | MEDLINE | ID: mdl-31199636

ABSTRACT

The role of the 4f orbitals in bonding is examined for the molecules cerium monoxide and cerium dioxide that have cerium formally in the +2 and +4 oxidation states, respectively. It is shown that the 4f orbitals are used primarily for polarization of the 5d orbitals when cerium is in the lower oxidation state, while the 4f orbitals play a significant role in chemical bonding via 5d/4f hybridization when cerium is in the +4 oxidation state.

14.
J Phys Chem A ; 123(21): 4588-4598, 2019 May 30.
Article in English | MEDLINE | ID: mdl-31062974

ABSTRACT

The ground and low-lying excited states of four alternating Si/C annulenes, H nSi n/2C n/2 with n = 4, 6, 8, and 10, have been investigated by ab initio molecular orbital methods and compared to those of their all-carbon and all-silicon analogues. In the ground state, all of the Si/C-mixed annulenes, except for the largest 10-membered annulene (H10Si5C5), assume equal-bond-length structures by adopting a closed-shell electronic structure in the possible highest symmetry. For the largest H10Si5C5, the trend of the bond delocalization still remains but the circular structure is considerably distorted and nonplanar due to severe angle strain. In the low-lying singlet (S1) and triplet (T1) states, the geometry of the compounds tends to be nonplanar as the excitations produce silyl radical character. Relative energies of the T1 and S1 states of the 6-membered ring, compared to those of the respective ground states (S0), are higher than those of the 4- and 8-membered rings, suggesting a special stability for H6Si3C3. The planar rhombus shape of the formally antiaromatic H4Si2C2 suggests that a synthetic effort is merited. Bonding analyses are given to support the conclusions reached on the basis of geometric structures and excited-state energetics.

15.
J Phys Chem A ; 123(12): 2325-2339, 2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30817150

ABSTRACT

The spin-orbit coupling constants (SOCC) in atoms and ions of the first- through third-row transition elements were calculated for the low-lying atomic states whose main electron configuration is [ nd] q ( q = 1-4 and 6-9, n = the principal quantum number), using four different approaches: (1) a nonrelativistic Hamiltonian used to construct multiconfiguration self-consistent field (MCSCF) wave functions utilizing effective core potentials and their associated basis sets within the framework of second-order configuration interaction (SOCI) to calculate spin-orbit couplings (SOC) using one-electron Breit-Pauli Hamiltonian (BPH), (2) a nonrelativistic Hamiltonian used to construct MCSCF wave functions utilizing model core potentials and their associated basis sets within the framework of SOCI to calculate SOC using the full BPH, (3) nonrelativistic and spin-independent relativistic Hamiltonians used to construct MCSCF wave functions utilizing all-electron (AE) basis sets within the framework of SOCI to calculate SOC using the full BPH, and (4) a relativistic Hamiltonian given by the exact two-component (X2C) transformation for construction of Kramers-restricted relativistic configuration interaction wave functions. In this investigation, these four approaches are referred to as ECP, MCP, AE, and X2C methods, respectively. The ECP, MCP, and AE methods are so-called two-step approaches (TSA), while the X2C method is a one-step approach (OSA). In the AE method, three different calculations-relativistic elimination of small components (RESC), third-order Douglas-Kroll-Hess (DKH3), and infinite-order two-component (IOTC) relativistic correction-were performed for the estimation of the scalar relativistic components in addition to those of the nonscalar relativistic (NSR) contributions. The calculated SOCC are compared to the available experimental data via the Landé interval rule. Although there are several exceptions, including states whose main configuration is [ nd]5, the average differences between the ECP and AE (IOTC) SOCC and between the ECP and the X2C SOCC are mostly less than 20%. The differences between the ECP and the experimental SOCC are even smaller. No serious discrepancy was found between the TSA and OSA predictions of SOCC for the first- and second-row transition elements in comparison to experiment. For atoms and ions of the third-row transition elements, the SOCC calculated through the Landé interval rule are not reliable. The low-energy spin-mixed (SM) states originating from a [5d] q configuration ( q = 2-4) have a larger energy lowering due to the SOC effects, in comparison with those for atoms and ions of the first- and second-row transition elements. For the spin-mixed (SM) states originating from a [5d] q configuration ( q = 6-8), the energy lowering of all 4F7/2, 5D1, and 5D3 states due to the SOC effects is smaller than those of the other SM states. This difficulty, which also arises for the MCP, AE, and X2C (OSA) approaches, suggests that the LS-coupling scheme is inappropriate.

16.
J Phys Chem A ; 122(23): 5223-5237, 2018 Jun 14.
Article in English | MEDLINE | ID: mdl-29791157

ABSTRACT

A novel hybrid correlation energy (HyCE) approach is proposed that determines the total correlation energy via distinct computation of its internal and external components. This approach evolved from two related studies. First, rigorous assessment of the accuracies and size extensivities of a number of electron correlation methods, that include perturbation theory (PT2), coupled-cluster (CC), configuration interaction (CI), and coupled electron pair approximation (CEPA), shows that the CEPA(0) variant of the latter and triples-corrected CC methods consistently perform very similarly. These findings were obtained by comparison to near full CI results for four small molecules and by charting recovered correlation energies for six steadily growing chain systems. Second, by generating valence virtual orbitals (VVOs) and utilizing the CEPA(0) method, we were able to partition total correlation energies into internal (or nondynamic) and external (or dynamic) parts for the aforementioned six chain systems and a benchmark test bed of 36 molecules. When using triple-ζ basis sets it was found that per orbital internal correlation energies were appreciably larger than per orbital external energies and that the former showed far more chemical variation than the latter. Additionally, accumulations of external correlation energies were seen to proceed smoothly, and somewhat linearly, as the virtual space is gradually increased. Combination of these two studies led to development of the HyCE approach, whereby the internal and external correlation energies are determined separately by CEPA(0)/VVO and PT2/external calculations, respectively. When applied to the six chain systems and the 36-molecule benchmark test set it was found that HyCE energies followed closely those of triples-corrected CC and CEPA(0) while easily outperforming MP2 and CCSD. The success of the HyCE approach is more notable when considering that its cost is only slightly more than MP2 and significantly cheaper than the CC approaches.

17.
Environ Sci Technol ; 51(21): 12972-12980, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-28994589

ABSTRACT

Humans have interacted with fire for thousands of years, yet the utilization of fossil fuels marked the beginning of a new era. Ubiquitous in the environment, pyrogenic carbon (PyC) arises from incomplete combustion of biomass and fossil fuels, forming a continuum of condensed aromatic structures. Here, we develop and evaluate 14C records for two complementary PyC molecular markers, benzene polycarboxylic acids (BPCAs) and polycyclic aromatic hydrocarbons (PAHs), preserved in aquatic sediments from a suburban and a remote catchment in the United States (U.S.) from the mid-1700s to 1998. Results show that the majority of PyC stems from local sources and is transferred to aquatic sedimentary archives on subdecadal to millennial time scales. Whereas a small portion stems from near-contemporaneous production and sedimentation, the majority of PyC (∼90%) experiences delayed transmission due to "preaging" on millennial time scales in catchment soils prior to its ultimate deposition. BPCAs (soot) and PAHs (precursors of soot) trace fossil fuel-derived PyC. Both markers parallel historical records of the consumption of fossil fuels in the U.S., yet never account for more than 19% total PyC. This study demonstrates that isotopic characterization of multiple tracers is necessary to constrain histories and inventories of PyC and that sequestration of PyC can markedly lag its production.


Subject(s)
Carbon , Environmental Monitoring , Polycyclic Aromatic Hydrocarbons , Fossil Fuels , Geologic Sediments , Humans , Soot
18.
J Phys Chem A ; 121(41): 8003-8011, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-28922914

ABSTRACT

Many ionic liquids containing the dicynamide anion (DCA-, formula N(CN)2-) exhibit hypergolic ignition when exposed to the common oxidizer nitric acid. However, the ignition delay is often about 10 times longer than the desired 5 ms for rocket applications, so that improvements are desired. Experiments in the past decade have suggested both a mechanism for the early reaction steps and also that additives such as decaborane can reduce the ignition delay. The mechanisms for reactions of nitric acid with both DCA- and protonated DCAH are considered here, using accurate wave function methods. Complexation of DCA- or DCAH with borane clusters B10H14 or B9H14- is found to modify these mechanisms slightly by changing the nature of some of the intermediate saddle points and by small reductions in the reaction barriers.

19.
J Phys Chem A ; 121(18): 3588-3597, 2017 May 11.
Article in English | MEDLINE | ID: mdl-28406302

ABSTRACT

Valence virtual orbitals (VVOs) are a quantitative and basis set independent method for extracting chemically meaningful lowest unoccupied molecular orbitals (LUMOs). The VVOs are formed based on a singular value decomposition (SVD) with respect to precomputed and internally stored ab initio accurate atomic minimal basis sets (AAMBS) for the atoms. The occupied molecular orbitals and VVOs together form a minimal basis set that can be transformed into orthogonal oriented quasi-atomic orbitals (OQUAOs) that provide a quantitative description of the bonding in a molecular environment. In the present work, relativistic AAMBS are developed that span the full valence orbital space. The impact of using full valence AAMBS for the formation of the VVOs and OQUAOs and the resulting bonding analysis is demonstrated with applications to the cuprous chloride, scandium monofluoride, and nickel silicide diatomic molecules.

20.
J Phys Chem A ; 121(14): 2715-2718, 2017 Apr 13.
Article in English | MEDLINE | ID: mdl-28403616
SELECTION OF CITATIONS
SEARCH DETAIL
...