Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Commun Signal ; 22(1): 304, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831326

ABSTRACT

Elevated concentrations of palmitate in serum of obese individuals can impair endothelial function, contributing to development of cardiovascular disease. Although several molecular mechanisms of palmitate-induced endothelial dysfunction have been proposed, there is no consensus on what signaling event is the initial trigger of detrimental palmitate effects. Here we report that inhibitors of ER stress or ceramid synthesis can rescue palmitate-induced autophagy impairment in macro- and microvascular endothelial cells. Furthermore, palmitate-induced cholesterol synthesis was reverted using these inhibitors. Similar to cell culture data, autophagy markers were increased in serum of obese individuals. Subsequent lipidomic analysis revealed that palmitate changed the composition of membrane phospholipids in endothelial cells and that these effects were not reverted upon application of above-mentioned inhibitors. However, ER stress inhibition in palmitate-treated cells enhanced the synthesis of trilglycerides and restored ceramide levels to control condition. Our results suggest that palmitate induces ER-stress presumably by shift in membrane architecture, leading to impaired synthesis of triglycerides and enhanced production of ceramides and cholesterol, which altogether enhances lipotoxicity of palmitate in endothelial cells.


Subject(s)
Endoplasmic Reticulum Stress , Endothelial Cells , Endoplasmic Reticulum Stress/drug effects , Humans , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Autophagy/drug effects , Triglycerides/metabolism , Cholesterol/metabolism , Palmitates/pharmacology , Ceramides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...