Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
J Nematol ; 55(1): 20230004, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36969543

ABSTRACT

Host-associated microbiomes have primarily been examined in the context of their internal microbial communities, but many animal species also contain microorganisms on external host surfaces that are important to host physiology. For nematodes, single strains of bacteria are known to adhere to the cuticle (e.g., Pasteuria penetrans), but the structure of a full external microbial community is uncertain. In prior research, we showed that internal gut microbiomes of nematodes (Plectus murrayi, Eudorylaimus antarcticus) and tardigrades from Antarctica's McMurdo Dry Valleys were distinct from the surrounding environment and primarily driven by host identity. Building on this work, we extracted an additional set of individuals containing intact external microbiomes and amplified them for 16S and 18S rRNA metabarcoding. Our results showed that external bacterial microbiomes were more diverse than internal microbiomes, but less diverse than the surrounding environment. Host-specific bacterial compositional patterns were observed, and external microbiomes were most similar to their respective internal microbiomes. However, external microbiomes were more influenced by the environment than the internal microbiomes were. Non-host eukaryotic communities were similar in diversity to internal eukaryotic communities, but exhibited more stochastic patterns of assembly compared to bacterial communities, suggesting the lack of a structured external eukaryotic microbiome. Altogether, we provide evidence that nematode and tardigrade cuticles are inhabited by robust bacterial communities that are substantially influenced by the host, albeit less so than internal microbiomes are.

2.
J Eat Disord ; 10(1): 156, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36335366

ABSTRACT

BACKGROUND: To investigate the frequency of compulsive exercise among early adolescents, and determine the associated impact of sex, physical activity level, exercise habits, motivational regulation, dieting behaviour and health-related quality of life (HRQoL) on compulsive exercise. METHODS: Cross-sectional design with 8th grade adolescents (n = 572, mean ± SD age 13.9 ± 0.3 yrs). Outcome assessment was compulsive exercise (Compulsive Exercise Test, CET). Total CET score ≥ 15 was defined as clinical CET score. Further assessment included exercise motivation (Behavioural Regulation of Exercise Questionnaire-2), HRQoL (KIDSCREEN 27), accelerometer-assessed physical activity and Andersen test for cardiorespiratory fitness. Exercise obsession was defined as clinical CET score and < 60 min/day with moderate-to-vigorous objectively assessed physical activity. RESULTS: Small sex differences were found for CET total score. Seven percent of the adolescents were classified with clinical CET score, and four percent with exercise obsession. Adolescents with clinical CET score had higher body mass index, more weight loss attempts, and lower physical fitness compared to adolescents with non-clinical CET score. Being a boy, higher scores on introjected motivational regulation and HRQOL subscale parent relation and autonomy, use of exercise monitoring tool, and number of weight loss attempt the past 12 months explained 39% of the total CET score variance. Physical activity level did not predict compulsive exercise. CONCLUSIONS: Compulsive exercise in early adolescents was predicted by exercise motivation, exercise habit, and dieting, but not physical activity level. This implicates a distinction of obsessive cognitions about physical activity from performed physical activity in adolescents, and that such cognitions must be addressed in future initiatives that aim to improve adolescents' general physical activity level, health, and wellbeing. Trial registration ClinicalTrials.gov: NCT03906851. Although there is a huge concern about adolescents being insufficiently physically active, there are also adolescents who struggle with issues of compulsive exercise. The issues of compulsive exercise have been rarely studied in adolescents. We therefore aimed to describe compulsive exercise and factors that were associated with and could explain presence of compulsive exercise. A total of 572 8th graders (age 13.9 ± 0.3 yrs) responded to this study. We found that the score on compulsive exercise was higher in boys than in girls, and that adolescents with high score on compulsive exercise had higher body mass index, more weight loss attempts, and lower physical fitness compared to adolescents with low score on compulsive exercise. Also, we found that exercise obsessions, i.e., thinking of exercise without actually exercising, was present in four percent of the respondents. Being a boy, attempting weight loss, exercising to avoid shame/guilt, and exercising for the perceived value of exercise predicted compulsive exercise. Awareness of the compulsive exercise and exercise obsessions is important in public health initiatives that aim to increase adolescents' physical activity level.

3.
Front Microbiol ; 12: 654135, 2021.
Article in English | MEDLINE | ID: mdl-34177836

ABSTRACT

Cold, dry, and nutrient-poor, the McMurdo Dry Valleys of Antarctica are among the most extreme terrestrial environments on Earth. Numerous studies have described microbial communities of low elevation soils and streams below glaciers, while less is known about microbial communities in higher elevation soils above glaciers. We characterized microbial life in four landscape features (habitats) of a mountain in Taylor Valley. These habitats varied significantly in soil moisture and include moist soils of a (1) lateral glacial moraine, (2) gully that terminates at the moraine, and very dry soils on (3) a southeastern slope and (4) dry sites near the gully. Using rRNA gene PCR amplicon sequencing of Bacteria and Archaea (16S SSU) and eukaryotes (18S SSU), we found that all habitat types harbored significantly different bacterial and eukaryotic communities and that these differences were most apparent when comparing habitats that had macroscopically visible soil crusts (gully and moraine) to habitats with no visible crusts (near gully and slope). These differences were driven by a relative predominance of Actinobacteria and a Colpodella sp. in non-crust habitats, and by phototrophic bacteria and eukaryotes (e.g., a moss) and predators (e.g., tardigrades) in habitats with biological soil crusts (gully and moraine). The gully and moraine also had significantly higher 16S and 18S ESV richness than the other two habitat types. We further found that many of the phototrophic bacteria and eukaryotes of the gully and moraine share high sequence identity with phototrophs from moist and wet areas elsewhere in the Dry Valleys and other cold desert ecosystems. These include a Moss (Bryum sp.), several algae (e.g., a Chlorococcum sp.) and cyanobacteria (e.g., Nostoc and Phormidium spp.). Overall, the results reported here broaden the diversity of habitat types that have been studied in the Dry Valleys of Antarctica and suggest future avenues of research to more definitively understand the biogeography and factors controlling microbial diversity in this unique ecosystem.

4.
Antonie Van Leeuwenhoek ; 111(8): 1389-1401, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29557533

ABSTRACT

Here we describe recent breakthroughs in our understanding of microbial life in dry volcanic tephra ("soil") that covers much of the surface area of the highest elevation volcanoes on Earth. Dry tephra above 6000 m.a.s.l. is perhaps the best Earth analog for the surface of Mars because these "soils" are acidic, extremely oligotrophic, exposed to a thin atmosphere, high UV fluxes, and extreme temperature fluctuations across the freezing point. The simple microbial communities found in these extreme sites have among the lowest alpha diversity of any known earthly ecosystem and contain bacteria and eukaryotes that are uniquely adapted to these extreme conditions. The most abundant eukaryotic organism across the highest elevation sites is a Naganishia species that is metabolically versatile, can withstand high levels of UV radiation and can grow at sub-zero temperatures, and during extreme diurnal freeze-thaw cycles (e.g. - 10 to + 30 °C). The most abundant bacterial phylotype at the highest dry sites sampled (6330 m.a.s.l. on Volcán Llullaillaco) belongs to the enigmatic B12-WMSP1 clade which is related to the Ktedonobacter/Thermosporothrix clade that includes versatile organisms with the largest known bacterial genomes. Close relatives of B12-WMSP1 are also found in fumarolic soils on Volcán Socompa and in oligotrophic, fumarolic caves on Mt. Erebus in Antarctica. In contrast to the extremely low diversity of dry tephra, fumaroles found at over 6000 m.a.s.l. on Volcán Socompa support very diverse microbial communities with alpha diversity levels rivalling those of low elevation temperate soils. Overall, the high-elevation biome of the Atacama region provides perhaps the best "natural experiment" in which to study microbial life in both its most extreme setting (dry tephra) and in one of its least extreme settings (fumarolic soils).


Subject(s)
Altitude , Bacterial Physiological Phenomena , Basidiomycota/physiology , Desert Climate , Mars , Soil Microbiology , Bacteria/classification , Bacteria/growth & development , Basidiomycota/classification , Basidiomycota/growth & development , Chile , Ecosystem , Phylogeny , Temperature
5.
Microb Ecol ; 76(2): 340-351, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29305629

ABSTRACT

The aim of this study was to understand the spatial distribution of microbial communities (18S and 16S rRNA genes) across one of the harshest terrestrial landscapes on Earth. We carried out Illumina sequencing using samples from two expeditions to the high slopes (up to 6050 m.a.s.l.) of Volcán Socompa and Llullaillaco to describe the microbial communities associated with the extremely dry tephra compared to areas that receive water from fumaroles and ice fields made up of nieves penitentes. There were strong spatial patterns relative to these landscape features with the most diverse (alpha diversity) communities being associated with fumaroles. Penitentes did not significantly increase alpha diversity compared to dry tephra at the same elevation (5825 m.a.s.l.) on Volcán Socompa, but the structure of the 18S community (beta diversity) was significantly affected by the presence of penitentes on both Socompa and Llullaillaco. In addition, the 18S community was significantly different in tephra wetted by penitentes versus dry tephra sites across many elevations on Llullaillaco. Traditional phototrophs (algae and cyanobacteria) were abundant in wetter tephra associated with fumaroles, and algae (but not cyanobacteria) were common in tephra associated with penitentes. Dry tephra had neither algae nor cyanobacteria but did host potential phototrophs in the Rhodospirillales on Volcán Llullaillaco, but not on Socompa. These results provide new insights into the distribution of microbes across one of the most extreme terrestrial environments on Earth and provide the first ever glimpse of life associated with nieves penitentes, spire-shaped ice structures that are widespread across the mostly unexplored high-elevation Andean Central Volcanic Zone.


Subject(s)
Bacterial Physiological Phenomena , Extreme Environments , Microbiota , Soil Microbiology , Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , Biodiversity , Chile , Cluster Analysis , Computational Biology , Cyanobacteria/classification , Desert Climate , Exobiology , Microbiota/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Soil , Temperature
6.
Extremophiles ; 21(3): 573-580, 2017 May.
Article in English | MEDLINE | ID: mdl-28321614

ABSTRACT

This is the first study of the highest elevation cyanobacteria-dominated microbial mat yet described. The desiccated mat was sampled in 2010 from an ephemeral rock pool at 5500 m above sea level in the Cordillera Vilcanota of southern Perú. After being frozen for 6 years at -20 °C in the lab, pieces of the mat were sequenced to fully characterize both the 16 and 18S microbial communities and experiments were conducted to determine if organisms in the mat could revive and become active under the extreme freeze-thaw conditions that these mats experience in the field. Sequencing revealed an unexpectedly diverse, multi-trophic microbial community with 16S OTU richness comparable to similar, seasonally desiccated mats from the Dry Valleys of Antarctica and low elevation sites in the Atacama Desert region. The bacterial community of the mat was dominated by phototrophs in the Cyanobacteria (Nostoc) and the Rhodospirillales, whereas the eukaryotic community was dominated by predators such as bdelloid rotifers (Philodinidae). Microcosm experiments showed that bdelloid rotifers in the mat were able to come out of dormancy and actively forage even under realistic field conditions (diurnal temperature fluctuations of -12 °C at night to + 27 °C during the day), and after being frozen for 6 years. Our results broaden our understanding of the diversity of life in periodically desiccated, high-elevation habitats and demonstrate that extreme freeze-thaw cycles per se are not a major factor limiting the development of at least some members of these unique microbial mat systems.


Subject(s)
Biodiversity , Cyanobacteria/isolation & purification , Ice Cover/microbiology , Rhodospirillales/isolation & purification , Rotifera/isolation & purification , Altitude , Animals , Cyanobacteria/genetics , Desiccation , Extreme Environments , Freezing , Peru , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 18S/genetics , Rhodospirillales/genetics , Rotifera/genetics
7.
Extremophiles ; 20(5): 579-88, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27315166

ABSTRACT

Soils above 6000 m.a.s.l. are among the most extreme environments on Earth, especially on high, dry volcanoes where soil temperatures cycle between -10 and 30 °C on a typical summer day. Previous studies have shown that such sites are dominated by yeast in the cryophilic Cryptococcus group, but it is unclear if they can actually grow (or are just surviving) under extreme freeze-thaw conditions. We carried out a series of experiments to determine if Cryptococcus could grow during freeze-thaw cycles similar to those measured under field conditions. We found that Cryptococcus phylotypes increased in relative abundance in soils subjected to 48 days of freeze-thaw cycles, becoming the dominant organisms in the soil. In addition, pure cultures of Cryptococcus isolated from these same soils were able to grow in liquid cultures subjected to daily freeze-thaw cycles, despite the fact that the culture medium froze solid every night. Furthermore, we showed that this organism is metabolically versatile and phylogenetically almost identical to strains from Antarctic Dry Valley soils. Taken together these results indicate that this organism has unique metabolic and temperature adaptations that make it able to thrive in one of the harshest and climatically volatile places on Earth.


Subject(s)
Adaptation, Physiological , Cryptococcus/growth & development , Freezing , Altitude , Cryptococcus/isolation & purification , Cryptococcus/physiology , Soil Microbiology
8.
Mol Ecol ; 23(2): 254-8, 2014 Feb.
Article in English | MEDLINE | ID: mdl-26010467

ABSTRACT

High-throughput sequencing technologies are now allowing us to study patterns of community assembly for diverse microbial assemblages across environmental gradients and during succession. Here we discuss potential explanations for similarities and differences in bacterial and fungal community assembly patterns along a soil chronosequence in the foreland of a receding glacier. Although the data are not entirely conclusive, they do indicate that successional trajectories for bacteria and fungi may be quite different. Recent empirical and theoretical studies indicate that smaller microbes (like most bacteria) are less likely to be dispersal limited than are larger microbes - which could result in a more deterministic community assembly pattern for bacteria during primary succession. Many bacteria are also better adapted (than are fungi) to life in barren, early-successional sediments in that some can fix nitrogen and carbon from the atmosphere - traits not possessed by any fungi. Other differences between bacteria and fungi are discussed, but it is apparent from this and other recent studies of microbial succession that we are a long way from understanding the mechanistic underpinnings of microbial community assembly during ecosystem succession. We especially need a better understanding of global and regional patterns of microbial dispersal and what environmental factors control the development of microbial communities in complex natural systems.


Subject(s)
Bacteria/classification , Ice Cover/microbiology , Mycorrhizae/classification , Soil Microbiology
9.
Environ Microbiol ; 15(10): 2672-80, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23551529

ABSTRACT

Numerous studies have shown that snow can contain a diverse array of algae known as 'snow algae'. Some reports also indicate that parasites of algae (e.g. chytrids) are also found in snow, but efforts to phylogenetically identify 'snow chytrids' have not been successful. We used culture-independent molecular approaches to phylogenetically identify chytrids that are common in long-lived snowpacks of Colorado and Europe. The most remarkable finding of the present study was the discovery of a new clade of chytrids that has representatives in snowpacks of Colorado and Switzerland and cold sites in Nepal and France, but no representatives from warmer ecosystems. This new clade ('Snow Clade 1' or SC1) is as deeply divergent as its sister clade, the Lobulomycetales, and phylotypes of SC1 show significant (P < 0.003) genetic-isolation by geographic distance patterns, perhaps indicating a long evolutionary history in the cryosphere. In addition to SC1, other snow chytrids were phylogenetically shown to be in the order Rhizophydiales, a group with known algal parasites and saprotrophs. We suggest that these newly discovered snow chytrids are important components of snow ecosystems where they contribute to snow food-web dynamics and the release of nutrients due to their parasitic and saprotrophic activities.


Subject(s)
Biodiversity , Chytridiomycota/classification , Chytridiomycota/genetics , Phylogeny , Snow/microbiology , Chytridiomycota/isolation & purification , Colorado , Ecosystem , France , Molecular Sequence Data , Nepal , Phylogeography , RNA, Ribosomal, 18S/genetics , Switzerland
10.
Med Microbiol Immunol ; 202(3): 197-206, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23269418

ABSTRACT

Mesenchymal stromal cells (MSCs) have a multilineage differentiation potential and provide immunosuppressive and antimicrobial functions. Murine as well as human MSCs restrict the proliferation of T cells. However, species-specific differences in the underlying molecular mechanisms have been described. Here, we analyzed the antiparasitic effector mechanisms active in murine MSCs. Murine MSCs, in contrast to human MSCs, could not restrict the growth of a highly virulent strain of Toxoplasma gondii (BK) after stimulation with IFN-γ. However, the growth of a type II strain of T. gondii (ME49) was strongly inhibited by IFN-γ-activated murine MSCs. Immunity-related GTPases (IRGs) as well as guanylate-binding proteins (GBPs) contributed to this antiparasitic effect. Further analysis showed that IFN-γ-activated mMSCs also inhibit the growth of Neospora caninum, a parasite belonging to the apicomplexan group as well. Detailed studies with murine IFN-γ-activated MSC indicated an involvement in IRGs like Irga6, Irgb6 and Irgd in the inhibition of N. caninum. Additional data showed that, furthermore, GBPs like mGBP1 and mGBP2 could have played a role in the anti-N. caninum effect of murine MSCs. These data underline that MSCs, in addition to their regenerative and immunosuppressive activity, function as antiparasitic effector cells as well. However, IRGs are not present in the human genome, indicating a species-specific difference in anti-T. gondii and anti-N. caninum effect between human and murine MSCs.


Subject(s)
GTP Phosphohydrolases/metabolism , GTP-Binding Proteins/immunology , GTP-Binding Proteins/metabolism , Mesenchymal Stem Cells/enzymology , Mesenchymal Stem Cells/immunology , Neospora/immunology , Toxoplasma/immunology , Animals , Interferon-gamma/metabolism , Mice , Neospora/growth & development , Toxoplasma/growth & development
12.
Proc Biol Sci ; 278(1706): 702-8, 2011 Mar 07.
Article in English | MEDLINE | ID: mdl-20826485

ABSTRACT

High-elevation valleys in dry areas of the Himalayas are among the most extreme, yet least explored environments on Earth. These barren, rocky valleys are subjected to year-round temperature fluctuations across the freezing point and very low availability of water and nutrients, causing previous workers to hypothesize that no photoautotrophic life (primary producers) exists in these locations. However, there has been no work using modern biogeochemical or culture-independent molecular methods to test the hypothesis that photoautotrophs are absent from high Himalayan soil systems. Here, we show that although microbial biomass levels are as low as those of the Dry Valleys of Antarctica, there are abundant microbial photoautotrophs, displaying unexpected phylogenetic diversity, in barren soils from just below the permanent ice line of the central Himalayas. Furthermore, we discovered that one of the dominant algal clades from the high Himalayas also contains the dominant algae in culture-independent surveys of both soil and ice samples from the Dry Valleys of Antarctica, revealing an unexpected link between these environmentally similar but geographically very distant systems. Phylogenetic and biogeographic analyses demonstrated that although this algal clade is globally distributed to other high-altitude and high-latitude soils, it shows significant genetic isolation by geographical distance patterns, indicating local adaptation and perhaps speciation in each region. Our results are the first to demonstrate the remarkable similarities of microbial life of arid soils of Antarctica and the high Himalayas. Our findings are a starting point for future comparative studies of the dry valleys of the Himalayas and Antarctica that will yield new insights into the cold and dry limits to life on Earth.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Altitude , Antarctic Regions , Bacteria/classification , Demography , India , Molecular Sequence Data , Phylogeny , Phylogeography , Water
14.
Proc Natl Acad Sci U S A ; 106(43): 18315-20, 2009 Oct 27.
Article in English | MEDLINE | ID: mdl-19826082

ABSTRACT

Periglacial soils are one of the least studied ecosystems on Earth, yet they are widespread and are increasing in area due to retreat of glaciers worldwide. Soils in these environments are cold and during the brief summer are exposed to high levels of UV radiation and dramatic fluctuations in moisture and temperature. Recent research suggests that these environments harbor immense microbial diversity. Here we use sequencing of environmental DNA, culturing of isolates, and analysis of environmental variables to show that members of the Chytridiomycota (chytrids) dominate fungal biodiversity and perhaps decomposition processes in plant-free, high-elevation soils from the highest mountain ranges on Earth. The zoosporic reproduction of chytrids requires free water, yet we found that chytrids constituted over 70% of the ribosomal gene sequences of clone libraries from barren soils of the Himalayas and Rockies; by contrast, they are rare in other soil environments. Very few chytrids have been cultured, although we were successful at culturing chytrids from high-elevation sites throughout the world. In a more focused study of our sites in Colorado, we show that carbon sources that support chytrid growth (eolian deposited pollen and microbial phototrophs) are abundant and that soils are saturated with water for several months under the snow, thus creating ideal conditions for the development of a chytrid-dominated ecosystem. Our work broadens the known biodiversity of the Chytridomycota, and describes previously unsuspected links between aquatic and terrestrial ecosystems in alpine regions.


Subject(s)
Altitude , Biodiversity , Chytridiomycota/genetics , Soil Microbiology , Base Sequence , Carbon/metabolism , Chytridiomycota/growth & development , Chytridiomycota/metabolism , Ecosystem , Molecular Sequence Data , Phylogeny
15.
Extremophiles ; 13(5): 807-16, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19597697

ABSTRACT

High-elevation periglacial soils are among the most extreme soil systems on Earth and may be good analogs for the polar regions of Mars where oligotrophic mineral soils abut with polar ice caps. Here we report on preliminary studies carried out during an expedition to an area where recent glacial retreat has exposed porous mineral soils to extreme, daily freeze-thaw cycles and high UV fluxes. We used in situ methods to show that inorganic nitrogen (NO(3) (-) and NH(4) (+)) was being actively cycled even during a period when diurnal soil temperatures (5 cm depth) ranged from -12 to 27 degrees C and when sub-zero, soil cooling rates reached 1.8 degrees C h(-1) (the most rapid soil cooling rates recorded to date). Furthermore, phylogenetic analyses of microbial phylotypes present at our highest sites (5410 m above sea level) showed the presence of nitrifying bacteria of the genus Nitrospira and newly discovered nitrite-oxidizing Betaproteobacteria. These soils were overwhelmingly dominated (>70% of phylotypes) by photosynthetic bacteria that were related to novel cyanobacteria previously found almost exclusively in other plant-free, high-elevation soils. We also demonstrated that soils from our highest sites had higher potential for mineralizing glutamate and higher microbial biomass than lower elevation soils that had been more recently covered by ice. Overall, our findings indicate that a diverse and robustly functioning microbial ecosystem is present in these previously unstudied high-elevation soils.


Subject(s)
Bacteria/isolation & purification , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Betaproteobacteria/classification , Betaproteobacteria/genetics , Betaproteobacteria/isolation & purification , Betaproteobacteria/metabolism , Biomass , Carbon/metabolism , Cold Climate , Cyanobacteria/classification , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , Cyanobacteria/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Glutamic Acid/metabolism , Ice Cover/microbiology , Nitrogen/metabolism , Peru , Phylogeny
16.
Proc Biol Sci ; 275(1653): 2793-802, 2008 Dec 22.
Article in English | MEDLINE | ID: mdl-18755677

ABSTRACT

Global climate change has accelerated the pace of glacial retreat in high-latitude and high-elevation environments, exposing lands that remain devoid of vegetation for many years. The exposure of 'new' soil is particularly apparent at high elevations (5000 metres above sea level) in the Peruvian Andes, where extreme environmental conditions hinder plant colonization. Nonetheless, these seemingly barren soils contain a diverse microbial community; yet the biogeochemical role of micro-organisms at these extreme elevations remains unknown. Using biogeochemical and molecular techniques, we investigated the biological community structure and ecosystem functioning of the pre-plant stages of primary succession in soils along a high-Andean chronosequence. We found that recently glaciated soils were colonized by a diverse community of cyanobacteria during the first 4-5 years following glacial retreat. This significant increase in cyanobacterial diversity corresponded with equally dramatic increases in soil stability, heterotrophic microbial biomass, soil enzyme activity and the presence and abundance of photosynthetic and photoprotective pigments. Furthermore, we found that soil nitrogen-fixation rates increased almost two orders of magnitude during the first 4-5 years of succession, many years before the establishment of mosses, lichens or vascular plants. Carbon analyses (pyrolysis-gas chromatography/mass spectroscopy) of soil organic matter suggested that soil carbon along the chronosequence was of microbial origin. This indicates that inputs of nutrients and organic matter during early ecosystem development at these sites are dominated by microbial carbon and nitrogen fixation. Overall, our results indicate that photosynthetic and nitrogen-fixing bacteria play important roles in acquiring nutrients and facilitating ecological succession in soils near some of the highest elevation receding glaciers on the Earth.


Subject(s)
Ecosystem , Ice Cover , Soil/analysis , Biodiversity , Cyanobacteria/genetics , Cyanobacteria/physiology , DNA, Bacterial/chemistry , DNA, Ribosomal/chemistry , Geography , Nitrogen/analysis , Nitrogen Fixation , Peru , Photosynthesis , Soil Microbiology
17.
Microb Ecol ; 56(4): 681-7, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18443847

ABSTRACT

Mats of coenocytic "snow molds" are commonly observed covering the soil and litter of alpine and subalpine areas immediately following snow melt. Here, we describe the phylogenetic placement, growth rates, and metabolic potential of cold-adapted fungi from under-snow mats in the subalpine forests of Colorado. SSU rDNA sequencing revealed that these fungi belong to the zygomycete orders Mucorales and Mortierellales. All of the isolates could grow at temperatures observed under the snow at our sites (0 degrees C and -2 degrees C) but were unable to grow at temperatures above 25 degrees C and were unable to grow anaerobically. Growth rates for these fungi were very high at -2 degrees C, approximately an order of magnitude faster than previously studied cold-tolerant fungi from Antarctic soils. Given the rapid aerobic growth of these fungi at low temperatures, we propose that they are uniquely adapted to take advantage of the flush of nutrient that occurs at the soil-snow interface beneath late winter snow packs. In addition, extracellular enzyme production was relatively high for the Mucorales, but quite low for the Mortierellales, perhaps indicating some niche separation between these fungi beneath the late winter snow pack.


Subject(s)
Ecosystem , Fungi/growth & development , Phylogeny , Snow , Trees/microbiology , Colorado , Fungi/classification , Fungi/genetics , RNA, Ribosomal/genetics , Sequence Analysis, DNA , Temperature
18.
Mol Phylogenet Evol ; 46(2): 635-44, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18032071

ABSTRACT

Fungi are one of the most diverse groups of Eukarya and play essential roles in terrestrial ecosystems as decomposers, pathogens and mutualists. This study unifies disparate reports of unclassified fungal sequences from soils of diverse origins and anchors many of them in a well-supported clade of the Ascomycota equivalent to a subphylum. We refer to this clade as Soil Clone Group I (SCGI). We expand the breadth of environments surveyed and develop a taxon-specific primer to amplify 2.4kbp rDNA fragments directly from soil. Our results also expand the known range of this group from North America to Europe and Australia. The ancient origin of SCGI implies that it may represent an important transitional form among the basal Ascomycota groups. SCGI is unusual because it currently represents the only major fungal lineage known only from sequence data. This is an important contribution towards building a more complete fungal phylogeny and highlights the need for further work to determine the function and biology of SCGI taxa.


Subject(s)
Ascomycota/classification , Phylogeny , Soil Microbiology , Ascomycota/genetics , DNA, Ribosomal/chemistry
19.
Ecology ; 88(6): 1379-85, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17601130

ABSTRACT

Soil microbial communities have the metabolic and genetic capability to adapt to changing environmental conditions on very short time scales. In this paper we combine biogeochemical and molecular approaches to reveal this potential, showing that microbial biomass can turn over on time scales of days to months in soil, resulting in a succession of microbial communities over the course of a year. This new understanding of the year-round turnover and succession of microbial communities allows us for the first time to propose a temporally explicit N cycle that provides mechanistic hypotheses to explain both the loss and retention of dissolved organic N (DON) and inorganic N (DIN) throughout the year in terrestrial ecosystems. In addition, our results strongly support the hypothesis that turnover of the microbial community is the largest source of DON and DIN for plant uptake during the plant growing season. While this model of microbial biogeochemistry is derived from observed dynamics in the alpine, we present several examples from other ecosystems to indicate that the general ideas of biogeochemical fluxes being linked to turnover and succession of microbial communities are applicable to a wide range of terrestrial ecosystems.


Subject(s)
Bacteria/growth & development , Climate , Ecosystem , Nitrogen/metabolism , Soil Microbiology , Bacteria/metabolism , Biodiversity , Biomass , Plant Development , Population Density , Population Dynamics , Seasons
20.
Appl Environ Microbiol ; 70(2): 1160-8, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14766601

ABSTRACT

Integrons are horizontal gene transfer (HGT) systems containing elements necessary for site-specific recombination and expression of foreign DNA. The overall phylogenetic distribution of integrons and range of genes that can be transferred by integrons are unknown. This report contains an exploration of integrons in an environmental microbial community and an investigation of integron evolution. First, using culture-independent techniques, we explored the diversity of integrons and integron-transferred genes in heavy-metal-contaminated mine tailings. Using degenerate primers, we amplified integron integrase genes from the tailings. We discovered 14 previously undescribed integrase genes, including six novel gene lineages. In addition, we found 11 novel gene cassettes in this sample. One of the gene cassettes that we sequenced is similar to a gene that codes for a step in a pathway for nitroaromatic catabolism, a group of compounds associated with mining activity. This suggests that integrons may be important for gene transfer in response to selective pressures other than the presence of antibiotics. We also investigated the evolution of integrons by statistically comparing the phylogenies of 16S rRNA and integrase genes from the same organisms, using sequences from GenBank and various sequencing projects. We found significant differences between the organismal (16S rRNA) and integrase trees, and we suggest that these differences may be due to HGT.


Subject(s)
Bacteria/genetics , Genetic Variation , Integrons/genetics , Mining , Soil Microbiology , Soil Pollutants , Bacteria/classification , Bacteria/enzymology , DNA, Bacterial/analysis , Evolution, Molecular , Gold , Integrases/genetics , Metals, Heavy/analysis , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...