Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cells ; 11(9)2022 05 01.
Article in English | MEDLINE | ID: mdl-35563826

ABSTRACT

Ras homolog gene family member A (RhoA) is a small GTPase of the Rho family involved in regulating multiple signal transduction pathways that influence a diverse range of cellular functions. RhoA and many of its downstream effector proteins are highly expressed in the nervous system, implying an important role for RhoA signaling in neurons and glial cells. Indeed, emerging evidence points toward a role of aberrant RhoA signaling in neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. In this review, we summarize the current knowledge of RhoA regulation and downstream cellular functions with an emphasis on the role of RhoA signaling in neurodegenerative diseases and the therapeutic potential of RhoA inhibition in neurodegeneration.


Subject(s)
Huntington Disease , Neurodegenerative Diseases , Parkinson Disease , Humans , Huntington Disease/metabolism , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Parkinson Disease/metabolism , Signal Transduction/physiology , rhoA GTP-Binding Protein/metabolism
2.
PLoS One ; 16(10): e0252635, 2021.
Article in English | MEDLINE | ID: mdl-34613964

ABSTRACT

Accumulation of aggregated alpha-synuclein (α-syn) is believed to play a pivotal role in the pathophysiology of Parkinson's disease (PD) and other synucleinopathies. As a key constituent of Lewy pathology, more than 90% of α-syn in Lewy bodies is phosphorylated at serine-129 (pS129) and hence, it is used extensively as a marker for α-syn pathology. However, the exact role of pS129 remains controversial and the kinase(s) responsible for the phosphorylation have yet to be determined. In this study, we investigated the effect of Polo-like kinase 2 (PLK2) inhibition on formation of pS129 using an ex vivo organotypic brain slice model of synucleinopathy. Our data demonstrated that PLK2 inhibition has no effect on α-syn aggregation, pS129 or inter-neuronal spreading of the aggregated α-syn seen in the organotypic slices. Instead, PLK2 inhibition reduced the soluble pS129 level in the nuclei. The same finding was replicated in an in vivo mouse model of templated α-syn aggregation and in human dopaminergic neurons, suggesting that PLK2 is more likely to be involved in S129-phosphorylation of the soluble physiological fraction of α-syn. We also demonstrated that reduction of nuclear pS129 following PLK2 inhibition for a short time before sample collection improves the signal-to-noise ratio when quantifying pS129 aggregate pathology.


Subject(s)
Phosphorylation/physiology , Protein Aggregates/physiology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Serine/metabolism , alpha-Synuclein/metabolism , Animals , Brain/metabolism , Dopamine/metabolism , Lewy Bodies/metabolism , Mice , Mice, Inbred C57BL , Neurons/metabolism , Parkinson Disease/metabolism
3.
Acta Neuropathol ; 142(1): 87-115, 2021 07.
Article in English | MEDLINE | ID: mdl-33978813

ABSTRACT

Pathology consisting of intracellular aggregates of alpha-Synuclein (α-Syn) spread through the nervous system in a variety of neurodegenerative disorders including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. The discovery of structurally distinct α-Syn polymorphs, so-called strains, supports a hypothesis where strain-specific structures are templated into aggregates formed by native α-Syn. These distinct strains are hypothesised to dictate the spreading of pathology in the tissue and the cellular impact of the aggregates, thereby contributing to the variety of clinical phenotypes. Here, we present evidence of a novel α-Syn strain induced by the multiple system atrophy-associated oligodendroglial protein p25α. Using an array of biophysical, biochemical, cellular, and in vivo analyses, we demonstrate that compared to α-Syn alone, a substoichiometric concentration of p25α redirects α-Syn aggregation into a unique α-Syn/p25α strain with a different structure and enhanced in vivo prodegenerative properties. The α-Syn/p25α strain induced larger inclusions in human dopaminergic neurons. In vivo, intramuscular injection of preformed fibrils (PFF) of the α-Syn/p25α strain compared to α-Syn PFF resulted in a shortened life span and a distinct anatomical distribution of inclusion pathology in the brain of a human A53T transgenic (line M83) mouse. Investigation of α-Syn aggregates in brain stem extracts of end-stage mice demonstrated that the more aggressive phenotype of the α-Syn/p25α strain was associated with an increased load of α-Syn aggregates based on a Förster resonance energy transfer immunoassay and a reduced α-Syn aggregate seeding activity based on a protein misfolding cyclic amplification assay. When injected unilaterally into the striata of wild-type mice, the α-Syn/p25α strain resulted in a more-pronounced motoric phenotype than α-Syn PFF and exhibited a "tropism" for nigro-striatal neurons compared to α-Syn PFF. Overall, our data support a hypothesis whereby oligodendroglial p25α is responsible for generating a highly prodegenerative α-Syn strain in multiple system atrophy.


Subject(s)
Multiple System Atrophy/genetics , Neurodegenerative Diseases/genetics , Synucleinopathies/pathology , alpha-Synuclein/genetics , Animals , Cell Line , Humans , Inclusion Bodies/pathology , Mice , Mice, Transgenic , Multiple System Atrophy/pathology , Nerve Tissue Proteins/genetics , Oligodendroglia/metabolism , Protein Conformation , Proteostasis Deficiencies/genetics , Substantia Nigra/pathology , alpha-Synuclein/toxicity
4.
PLoS One ; 16(4): e0248800, 2021.
Article in English | MEDLINE | ID: mdl-33909634

ABSTRACT

BACKGROUND: Parkinson's disease is characterized by motor dysfunctions including bradykinesia. In a recent study, eight weeks of daily transcranial stimulation with bipolar pulsed electromagnetic fields improved functional rate of force development and decreased inter-hand tremor coherence in patients with mild Parkinson's disease. OBJECTIVE: To investigate the effect of long-term treatment with transcranial bipolar pulsed electromagnetic fields on motor performance in terms of movement speed and on neurotrophic and angiogenic factors. METHODS: Patients diagnosed with idiopathic Parkinson's disease had either daily 30-min treatment with bipolar (±50 V) transcranial pulsed electromagnetic stimulation (squared pulses, 3ms duration) for three eight-week periods separated by one-week pauses (T-PEMF group) (n = 16) or were included in a PD-control group (n = 8). Movement speed was assessed in a six-cycle sit-to-stand task performed on a force plate. Cerebrospinal fluid and venous blood were collected and analyzed for erythropoietin and vascular endothelial growth factor. RESULTS: Major significant improvement of movement speed compared to the natural development of the disease was found (p = 0.001). Thus, task completion time decreased gradually during the treatment period from 10.10s to 8.23s (p<0.001). The untreated PD-control group did not change (p = 0.458). The treated group did not differ statistically from that of a healthy age matched reference group at completion of treatment. Erythropoietin concentration in the cerebrospinal fluid also increased significantly in the treated group (p = 0.012). CONCLUSION: Long-term treatment with transcranial bipolar pulsed electromagnetic fields increased movement speed markedly and elevated erythropoietin levels. We hypothesize that treatment with transcranial bipolar pulsed electromagnetic fields improved functional performance by increasing dopamine levels in the brain, possibly through erythropoietin induced neural repair and/or protection of dopaminergic neurons.


Subject(s)
Electromagnetic Fields , Erythropoietin/cerebrospinal fluid , Magnetic Field Therapy , Movement , Parkinson Disease , Aged , Female , Humans , Male , Middle Aged , Parkinson Disease/cerebrospinal fluid , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Prospective Studies
5.
Cells ; 10(2)2021 01 31.
Article in English | MEDLINE | ID: mdl-33572534

ABSTRACT

Parkin and α-synuclein are two key proteins involved in the pathophysiology of Parkinson's disease (PD). Neurotoxic alterations of α-synuclein that lead to the formation of toxic oligomers and fibrils contribute to PD through synaptic dysfunction, mitochondrial impairment, defective endoplasmic reticulum and Golgi function, and nuclear dysfunction. In half of the cases, the recessively inherited early-onset PD is caused by loss of function mutations in the PARK2 gene that encodes the E3-ubiquitin ligase, parkin. Parkin is involved in the clearance of misfolded and aggregated proteins by the ubiquitin-proteasome system and regulates mitophagy and mitochondrial biogenesis. PARK2-related PD is generally thought not to be associated with Lewy body formation although it is a neuropathological hallmark of PD. In this review article, we provide an overview of post-mortem neuropathological examinations of PARK2 patients and present the current knowledge of a functional interaction between parkin and α-synuclein in the regulation of protein aggregates including Lewy bodies. Furthermore, we describe prevailing hypotheses about the formation of intracellular micro-aggregates (synuclein inclusions) that might be more likely than Lewy bodies to occur in PARK2-related PD. This information may inform future studies aiming to unveil primary signaling processes involved in PD and related neurodegenerative disorders.


Subject(s)
Parkinson Disease/genetics , Ubiquitin-Protein Ligases/metabolism , alpha-Synuclein/metabolism , Female , Humans , Male , Middle Aged , Parkinson Disease/pathology
6.
Stem Cell Reports ; 16(2): 281-294, 2021 02 09.
Article in English | MEDLINE | ID: mdl-33482100

ABSTRACT

Microglia have recently been established as key regulators of brain development. However, their role in neuronal subtype specification remains largely unknown. Using three different co-culture setups, we show that microglia-secreted factors enhance dopaminergic differentiation of somatic and induced pluripotent stem cell-derived human neural stem cells (NSCs). The effect was consistent across different NSC and microglial cell lines and was independent of prior microglial activation, although restricted to microglia of embryonic origin. We provide evidence that the effect is mediated through reduced cell proliferation and decreased apoptosis and necrosis orchestrated in a sequential manner during the differentiation process. tumor necrosis factor alpha, interleukin-1ß, and insulinlike growth factor 1 are identified as key mediators of the effect and shown to directly increase dopaminergic differentiation of human NSCs. These findings demonstrate a positive effect of microglia on dopaminergic neurogenesis and may provide new insights into inductive and protective factors that can stimulate in vitro derivation of dopaminergic neurons.


Subject(s)
Cell Differentiation , Cell Proliferation , Cytokines/metabolism , Dopaminergic Neurons/metabolism , Induced Pluripotent Stem Cells/physiology , Microglia/physiology , Neural Stem Cells/metabolism , Animals , Apoptosis , Cell Line , Cells, Cultured , Coculture Techniques/methods , Dopamine/metabolism , Humans , Insulin-Like Growth Factor I/metabolism , Interleukin-1beta/metabolism , Mice , Mice, Inbred C57BL , Neurogenesis , Tumor Necrosis Factor-alpha/metabolism
7.
Sci Rep ; 10(1): 10278, 2020 06 24.
Article in English | MEDLINE | ID: mdl-32581291

ABSTRACT

Mutations in the PARK2 gene encoding parkin, an E3 ubiquitin ligase, are associated with autosomal recessive early-onset Parkinson's disease (PD). While parkin has been implicated in the regulation of mitophagy and proteasomal degradation, the precise mechanism leading to neurodegeneration in both sporadic and familial PD upon parkin loss-of-function remains unknown. Cultures of isogenic induced pluripotent stem cell (iPSC) lines with and without PARK2 knockout (KO) enable mechanistic studies of the effect of parkin deficiency in human dopaminergic neurons. We used such cells to investigate the impact of PARK2 KO on the lysosomal compartment and found a clear link between parkin deficiency and lysosomal alterations. PARK2 KO neurons exhibited a perturbed lysosomal morphology with enlarged electron-lucent lysosomes and an increased lysosomal content, which was exacerbated by mitochondrial stress and could be ameliorated by antioxidant treatment. We also found decreased lysosomal enzyme activity and autophagic perturbations, suggesting an impairment of the autophagy-lysosomal pathway in parkin-deficient cells. Interestingly, activity of the GBA-encoded enzyme, ß-glucocerebrosidase, was increased, suggesting the existence of a compensatory mechanism. In conclusion, our data provide a unique characterization of the morphology, content, and function of lysosomes in PARK2 KO neurons and reveal an important new connection between mitochondrial dysfunction and lysosomal dysregulation in PD pathogenesis.


Subject(s)
Dopaminergic Neurons/pathology , Lysosomes/pathology , Parkinsonian Disorders/pathology , Ubiquitin-Protein Ligases/genetics , Cell Line , Dopaminergic Neurons/cytology , Dopaminergic Neurons/ultrastructure , Gene Knockdown Techniques , Humans , Induced Pluripotent Stem Cells , Loss of Function Mutation , Lysosomes/ultrastructure , Microscopy, Electron, Transmission , Parkinsonian Disorders/genetics
8.
Neurobiol Dis ; 132: 104581, 2019 12.
Article in English | MEDLINE | ID: mdl-31445161

ABSTRACT

Mutations in parkin, encoded by the PARK2 gene, causes early-onset familial Parkinson's disease (PD), but dysfunctional parkin has also been implicated in sporadic PD. By combining human isogenic induced pluripotent stem cells (iPSCs) with and without PARK2 knockout (KO) and a novel large-scale mass spectrometry based proteomics and post-translational modification (PTM)-omics approach, we have mapped changes in protein profiles and PTMs caused by parkin deficiency in neurons. Our study identifies changes to several proteins previously shown to be dysregulated in brains of sporadic PD patients. Pathway analysis and subsequent in vitro assays reveal perturbations in migration and neurite outgrowth in the PARK2 KO neurons. We confirm the neurite defects using long-term engraftment of neurons in the striatum of immunosuppressed hemiparkinsonian adult rats. The GTP-binding protein RhoA was identified as a key upstream regulator, and RhoA activity was significantly increased in PARK2 KO neurons. By inhibiting RhoA signalling the migration and neurite outgrowth phenotypes could be rescued. Our study provides new insight into the pathogenesis of PD and demonstrates the broadly applicable potential of proteomics and PTMomics for elucidating the role of disease-causing mutations.


Subject(s)
Cell Movement/physiology , Dopaminergic Neurons/metabolism , Neurogenesis/physiology , Parkinson Disease/metabolism , Ubiquitin-Protein Ligases/genetics , rhoA GTP-Binding Protein/metabolism , Animals , Gene Knockout Techniques , Humans , Induced Pluripotent Stem Cells , Mutation , Parkinson Disease/genetics , Rats , Signal Transduction/physiology , Ubiquitin-Protein Ligases/deficiency
9.
Stem Cells Int ; 2017: 9605432, 2017.
Article in English | MEDLINE | ID: mdl-29201062

ABSTRACT

Spontaneous cytosolic calcium transients and oscillations have been reported in various tissues of nonhuman and human origin but not in human midbrain-derived stem cells. Using confocal microfluorimetry, we studied spontaneous calcium transients and calcium-regulating mechanisms in a human ventral mesencephalic stem cell line undergoing proliferation and neuronal differentiation. Spontaneous calcium transients were detected in a large fraction of both proliferating (>50%) and differentiating (>55%) cells. We provide evidence for the existence of intracellular calcium stores that respond to muscarinic activation of the cells, having sensitivity for ryanodine and thapsigargin possibly reflecting IP3 receptor activity and the presence of ryanodine receptors and calcium ATPase pumps. The observed calcium transient activity potentially supports the existence of a sodium-calcium antiporter and the existence of calcium influx induced by depletion of calcium stores. We conclude that the cells have developed the most important mechanisms governing cytosolic calcium homeostasis. This is the first comparative report of spontaneous calcium transients in proliferating and differentiating human midbrain-derived stem cells that provides evidence for the mechanisms that are likely to be involved. We propose that the observed spontaneous calcium transients may contribute to mechanisms involved in cell proliferation, phenotypic differentiation, and general cell maturation.

10.
Ugeskr Laeger ; 178(29)2016 Jul 18.
Article in Danish | MEDLINE | ID: mdl-27460466

ABSTRACT

Research into the causes of neurodegenerative diseases like Parkinson's- and Alzheimer's disease has long been hampered by the lack of access to live disease-afflicted neurons for in vitro studies. The introduction of induced pluripotent stem (iPS) cells has made such studies possible. iPS cells can be reprogrammed from somatic patient-derived cells (e.g. skin cells) and differentiated into any cell type of the body. This allows for the production of neurons, which have the genetic background of the patients and show disease-relevant phenotypes.


Subject(s)
Cellular Reprogramming Techniques , Induced Pluripotent Stem Cells/metabolism , Neurodegenerative Diseases , Biomedical Research/trends , Cell Differentiation , Fibroblasts/metabolism , Humans , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/therapy
11.
ACS Synth Biol ; 3(12): 949-52, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25524095

ABSTRACT

The lac promoter is one of the most commonly used promoters for expression control of recombinant genes in E. coli. In the absence of galactosides, the lac promoter is repressed by its repressor protein LacI. Since the lac promoter is regulated by a repressor, overexpression of LacI is necessary for regulation when the promoter is introduced on a high-copy plasmid. For that purpose, a modified variant of LacI, a LVA-tagged LacI, was submitted to the Registry of Standard Biological Parts and has been used for more than 500 constructs since then. We have found, however, that natural LacI is superior to the LVA-tagged LacI as controller of expression.


Subject(s)
Escherichia coli/genetics , Genetic Engineering/methods , Lac Operon/genetics , Promoter Regions, Genetic/genetics , Escherichia coli/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...