Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 16094, 2018 10 31.
Article in English | MEDLINE | ID: mdl-30382141

ABSTRACT

Oviductosomes (OVS) are nano-sized extracellular vesicles secreted in the oviductal luminal fluid by oviductal epithelial cells and known to be involved in sperm capacitation and fertility. Although they have been shown to transfer encapsulated proteins to sperm, cargo constituents other than proteins have not been identified. Using next-generation sequencing, we demonstrate that OVS are carriers of microRNAs (miRNAs), with 272 detected throughout the estrous cycle. Of the 50 most abundant, 6 (12%) and 2 (4%) were expressed at significantly higher levels (P < 0.05) at metestrus/diestrus and proestrus/estrus. RT-qPCR showed that selected miRNAs are present in oviductal epithelial cells in significantly (P < 0.05) lower abundance than in OVS, indicating selective miRNA packaging. The majority (64%) of the top 25 OVS miRNAs are present in sperm. These miRNAs' potential target list is enriched with transcription factors, transcription regulators, and protein kinases and there are several embryonic developmentally-related genes. Importantly, OVS can deliver to sperm miRNAs, including miR-34c-5p which is essential for the first cleavage and is solely sperm-derived in the zygote. Z-stack of confocal images of sperm co-incubated with OVS loaded with labeled miRNAs showed the intracellular location of the delivered miRNAs. Interestingly, individual miRNAs were predominantly localized in specific head compartments, with miR-34c-5p being highly concentrated at the centrosome where it is known to function. These results, for the first time, demonstrate OVS' ability to contribute to the sperm's miRNA repertoire (an important role for solely sperm-derived zygotic miRNAs) and the physiological relevance of an OVS-borne miRNA that is delivered to sperm.


Subject(s)
Centrosome/metabolism , Estrous Cycle/genetics , Extracellular Vesicles/metabolism , Gene Expression Profiling , MicroRNAs/metabolism , Oviducts/metabolism , Spermatozoa/metabolism , Animals , Cell Proliferation , Centrosome/ultrastructure , Embryonic Development , Endocytosis , Extracellular Vesicles/ultrastructure , Female , Gene Expression Regulation , Gene Ontology , Male , Mice , MicroRNAs/genetics , Oviducts/embryology , Oviducts/ultrastructure , Reproducibility of Results
2.
BMC Genomics ; 19(1): 547, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-30029591

ABSTRACT

BACKGROUND: Since the proposal of Brachypodium distachyon as a model for the grasses, over 500 Bdi-miRNAs have been annotated in miRBase making Brachypodium second in number only to rice. Other monocots, such as switchgrass, are completely absent from the miRBase database. While a significant number of miRNAs have been identified which are highly conserved across plants, little research has been done with respect to the conservation of miRNA targets. Plant responses to abiotic stresses are regulated by diverse pathways many of which involve miRNAs; however, it can be difficult to identify miRNA guided gene regulation when the miRNA is not the primary regulator of the target mRNA. RESULTS: To investigate miRNA target conservation and stress response involvement, a set of PARE (Parallel Analysis of RNA Ends) libraries totaling over two billion reads was constructed and sequenced from Brachypodium, switchgrass, and sorghum representing the first report of RNA degradome data from the latter two species. Analysis of this data provided not only PARE evidence for miRNA guided cleavage of over 7000 predicted target mRNAs in Brachypodium, but also evidence for miRNA guided cleavage of over 1000 homologous transcripts in sorghum and switchgrass. A pipeline was constructed to compare RNA-seq and PARE data made from Brachypodium plants exposed to various abiotic stress conditions. This resulted in the identification of 44 miRNA targets which exhibit stress regulated cleavage. Time course experiments were performed to reveal the relationship between miR393ab, miR169a, miR394ab, and their respective targets throughout the first 36 h of the cold stress response in Brachypodium. CONCLUSIONS: Knowledge gained from this study provides considerable insight into the RNA degradomes and the breadth of miRNA target conservation among these three species. Additionally, associations of a number of miRNAs and target mRNAs with the stress responses have been revealed which could aid in the development of stress tolerant transgenic crops.


Subject(s)
Brachypodium/genetics , MicroRNAs/metabolism , RNA, Messenger/metabolism , Brachypodium/metabolism , Cold Temperature , Crops, Agricultural/genetics , Gene Expression Regulation, Plant , Panicum/genetics , RNA Cleavage , Sequence Analysis, RNA , Sorghum/genetics , Stress, Physiological/genetics
3.
Genome Biol Evol ; 8(5): 1571-89, 2016 06 03.
Article in English | MEDLINE | ID: mdl-27189985

ABSTRACT

Horseshoe crabs are xiphosuran chelicerates, the sister group to arachnids. As such, they are important for understanding the most recent common ancestor of Euchelicerata and the evolution and diversification of Arthropoda. Limulus polyphemus is the most investigated of the four extant species of horseshoe crabs, and the structure and function of its visual system have long been a major focus of studies critical for understanding the evolution of visual systems in arthropods. Likewise, studies of genes encoding Limulus opsins, the protein component of the visual pigments, are critical for understanding opsin evolution and diversification among chelicerates, where knowledge of opsins is limited, and more broadly among arthropods. In the present study, we sequenced and assembled a high quality nuclear genomic sequence of L. polyphemus and used these data to annotate the full repertoire of Limulus opsins. We conducted a detailed phylogenetic analysis of Limulus opsins, including using gene structure and synteny information to identify relationships among different opsin classes. We used our phylogeny to identify significant genomic events that shaped opsin evolution and therefore the visual system of Limulus We also describe the tissue expression patterns of the 18 opsins identified and show that transcripts encoding a number, including a peropsin, are present throughout the central nervous system. In addition to significantly extending our understanding of photosensitivity in Limulus and providing critical insight into the genomic evolution of horseshoe crab opsins, this work provides a valuable genomic resource for addressing myriad questions related to xiphosuran physiology and arthropod evolution.


Subject(s)
Evolution, Molecular , Horseshoe Crabs/genetics , Opsins/genetics , Phylogeny , Amino Acid Sequence , Animals , Eye/metabolism , Genome , Multigene Family/genetics , Opsins/classification
4.
Nucleic Acids Res ; 43(1): 309-23, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25429978

ABSTRACT

In metazoans, cleavage by the endoribonuclease SMG6 is often the first degradative event in non-sense-mediated mRNA decay (NMD). However, the exact sites of SMG6 cleavage have yet to be determined for any endogenous targets, and most evidence as to the identity of SMG6 substrates is indirect. Here, we use Parallel Analysis of RNA Ends to specifically identify the 5' termini of decay intermediates whose production is dependent on SMG6 and the universal NMD factor UPF1. In this manner, the SMG6 cleavage sites in hundreds of endogenous NMD targets in human cells have been mapped at high resolution. In addition, a preferred sequence motif spanning most SMG6 cleavage sites has been discovered and validated by mutational analysis. For many SMG6 substrates, depletion of SMG6 resulted in the accumulation of decapped transcripts, an effect indicative of competition between SMG6-dependent and SMG6-independent NMD pathways. These findings provide key insights into the mechanisms by which mRNAs targeted by NMD are degraded.


Subject(s)
Nonsense Mediated mRNA Decay , RNA Cleavage , RNA, Messenger/chemistry , Telomerase/metabolism , HeLa Cells , High-Throughput Nucleotide Sequencing , Humans , Nucleotide Motifs , RNA, Messenger/metabolism , Sequence Analysis, RNA
5.
Genome Biol ; 14(12): R145, 2013 Dec 24.
Article in English | MEDLINE | ID: mdl-24367943

ABSTRACT

BACKGROUND: The wild grass Brachypodium distachyon has emerged as a model system for temperate grasses and biofuel plants. However, the global analysis of miRNAs, molecules known to be key for eukaryotic gene regulation, has been limited in B. distachyon to studies examining a few samples or that rely on computational predictions. Similarly an in-depth global analysis of miRNA-mediated target cleavage using parallel analysis of RNA ends (PARE) data is lacking in B. distachyon. RESULTS: B. distachyon small RNAs were cloned and deeply sequenced from 17 libraries that represent different tissues and stresses. Using a computational pipeline, we identified 116 miRNAs including not only conserved miRNAs that have not been reported in B. distachyon, but also non-conserved miRNAs that were not found in other plants. To investigate miRNA-mediated cleavage function, four PARE libraries were constructed from key tissues and sequenced to a total depth of approximately 70 million sequences. The roughly 5 million distinct genome-matched sequences that resulted represent an extensive dataset for analyzing small RNA-guided cleavage events. Analysis of the PARE and miRNA data provided experimental evidence for miRNA-mediated cleavage of 264 sites in predicted miRNA targets. In addition, PARE analysis revealed that differentially expressed miRNAs in the same family guide specific target RNA cleavage in a correspondingly tissue-preferential manner. CONCLUSIONS: B. distachyon miRNAs and target RNAs were experimentally identified and analyzed. Knowledge gained from this study should provide insights into the roles of miRNAs and the regulation of their targets in B. distachyon and related plants.


Subject(s)
Brachypodium/genetics , MicroRNAs/genetics , RNA, Plant/genetics , Gene Expression Regulation, Plant , Genes, Plant , Sequence Analysis, RNA/methods
6.
Methods Mol Biol ; 592: 31-50, 2010.
Article in English | MEDLINE | ID: mdl-19802587

ABSTRACT

For the experimental analysis of miRNAs and other small RNAs in the 20-25 nucleotide (nt) size range, the first and most important step is the isolation of high-quality total RNA. Because RNA degradation products can mask or dilute the presence of true miRNAs, it is important when choosing a method that it efficiently extracts RNA from tissues in a manner that prevents degradation of RNA of both high and low molecular weight. In addition, the presence of polyphenols, polysaccharides, and secondary metabolites may render nucleic acids insoluble, and hinder the recovery of the miRNAs. Finally, and most importantly, the method chosen must be capable of retaining the small RNA component. In this chapter, we will present a set of total RNA isolation methods that can be used to maximize the recovery of high-quality RNA to be used in miRNA analysis for a large number of plant species and tissue types.


Subject(s)
Genetic Techniques , MicroRNAs/isolation & purification , Plants/genetics , RNA, Plant/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...