Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Mol Biol Rep ; 51(1): 343, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38400845

ABSTRACT

The consumption of processed food is on the rise leading to huge intake of excess dietary salt, which strongly correlates with development of hypertension, often leading to cardiovascular diseases such as stroke and heart attack, as well as activation of the immune system. The effect of salt on macrophages is especially interesting as they are able to sense high sodium levels in tissues leading to transcriptional changes. In the skin, macrophages were shown to influence lymphatic vessel growth which, in turn, enables the transport of excess salt and thereby prevents the development of high blood pressure. Furthermore, salt storage in the skin has been linked to the onset of pro-inflammatory effector functions of macrophages in pathogen defence. However, there is only little known about the mechanisms which are involved in changing macrophage function to salt exposure. Here, we characterize the response of macrophages to excess salt both in vitro and in vivo. Our results validate and strengthen the notion that macrophages exhibit chemotactic migration in response to salt gradients in vitro. Furthermore, we demonstrate a reduction in phagocytosis and efferocytosis following acute salt challenge in vitro. While acute exposure to a high-salt diet in vivo has a less pronounced impact on macrophage core functions such as phagocytosis, our data indicate that prolonged salt challenge may exert a distinct effect on the function of macrophages. These findings suggest a potential role for excessive salt sensing by macrophages in the manifestation of diseases related to high-salt diets and explicitly highlight the need for in vivo work to decipher the physiologically relevant impact of excess salt on tissue and cell function.


Subject(s)
Hypertension , Sodium Chloride, Dietary , Humans , Macrophages , Sodium Chloride , Phagocytosis
2.
Sci Immunol ; 9(92): eadi9769, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38207055

ABSTRACT

UNC93B1 is critical for trafficking and function of nucleic acid-sensing Toll-like receptors (TLRs) TLR3, TLR7, TLR8, and TLR9, which are essential for antiviral immunity. Overactive TLR7 signaling induced by recognition of self-nucleic acids has been implicated in systemic lupus erythematosus (SLE). Here, we report UNC93B1 variants (E92G and R336L) in four patients with early-onset SLE. Patient cells or mouse macrophages carrying the UNC93B1 variants produced high amounts of TNF-α and IL-6 and upon stimulation with TLR7/TLR8 agonist, but not with TLR3 or TLR9 agonists. E92G causes UNC93B1 protein instability and reduced interaction with TLR7, leading to selective TLR7 hyperactivation with constitutive type I IFN signaling. Thus, UNC93B1 regulates TLR subtype-specific mechanisms of ligand recognition. Our findings establish a pivotal role for UNC93B1 in TLR7-dependent autoimmunity and highlight the therapeutic potential of targeting TLR7 in SLE.


Subject(s)
Lupus Erythematosus, Systemic , Toll-Like Receptor 7 , Mice , Animals , Humans , Toll-Like Receptor 7/genetics , Autoimmunity/genetics , Toll-Like Receptor 9/metabolism , Toll-Like Receptor 8 , Toll-Like Receptor 3/metabolism , Lupus Erythematosus, Systemic/genetics , Membrane Transport Proteins
3.
Front Cardiovasc Med ; 10: 1221620, 2023.
Article in English | MEDLINE | ID: mdl-38034381

ABSTRACT

Background: An abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease. Although its pathogenesis is still poorly understood, recent evidence suggests that AAA displays autoimmune disease characteristics. Particularly, T cells responding to AAA-related antigens in the aortic wall may contribute to an initial immune response. Single-cell RNA (scRNA) T cell receptor (TCR) and B cell receptor (BCR) sequencing is a powerful tool for investigating clonality. However, difficulties such as limited numbers of isolated cells must be considered during implementation and data analysis, making biological interpretation challenging. Here, we perform a representative single-cell immune repertoire analysis in experimental murine AAA and show a reliable bioinformatic processing pipeline highlighting opportunities and limitations of this approach. Methods: We performed scRNA TCR and BCR sequencing of isolated lymphocytes from the infrarenal aorta of male C57BL/6J mice 3, 7, 14, and 28 days after AAA induction via elastase perfusion of the aorta. Sham-operated mice at days 3 and 28 and non-operated mice served as controls. Results: Comparison of complementarity-determining region (CDR3) length distribution of 179 B cells and 796 T cells revealed neither differences between AAA and control nor between the disease stages. We found no clonal expansion of B cells in AAA. For T cells, we identified several clones in 11 of 16 AAA samples and one of eight control samples. Immune receptor repertoire comparison indicated that only a few clones were shared between the individual AAA samples. The most frequently used V-genes in the TCR beta chain in AAA were TRBV3, TRBV19, and the splicing variant TRBV12-2 + TRBV13-2. Conclusion: We found no clonal expansion of B cells but evidence for clonal expansion of T cells in elastase-induced AAA in mice. Our findings imply that a more precise characterization of TCR and BCR distribution requires a more extensive number of lymphocytes to prevent undersampling and potentially detect rare clones. Thus, further experiments are necessary to confirm our findings. In summary, this paper examines TCR and BCR sequencing results, identifies limitations and pitfalls, and offers guidance for future studies.

4.
Nat Commun ; 14(1): 7238, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37945559

ABSTRACT

The blood proteome holds great promise for precision medicine but poses substantial challenges due to the low abundance of most plasma proteins and the vast dynamic range of the plasma proteome. Here we address these challenges with NUcleic acid Linked Immuno-Sandwich Assay (NULISA™), which improves the sensitivity of traditional proximity ligation assays by ~10,000-fold to attomolar level, by suppressing assay background via a dual capture and release mechanism built into oligonucleotide-conjugated antibodies. Highly multiplexed quantification of both low- and high-abundance proteins spanning a wide dynamic range is achieved by attenuating signals from abundant targets with unconjugated antibodies and next-generation sequencing of barcoded reporter DNA. A 200-plex NULISA containing 124 cytokines and chemokines and other proteins demonstrates superior sensitivity to a proximity extension assay in detecting biologically important low-abundance biomarkers in patients with autoimmune diseases and COVID-19. Fully automated NULISA makes broad and in-depth proteomic analysis easily accessible for research and diagnostic applications.


Subject(s)
Proteome , Proteomics , Humans , Blood Proteins/genetics , Antibodies , Cytokines
5.
Neurol Res Pract ; 5(1): 49, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37759276

ABSTRACT

Headache is one of the most common neurological manifestations of COVID-19, but it is unclear whether chronic headache as a symptom of Post-COVID-19 is associated with ongoing CNS damage. We compared cerebrospinal fluid (CSF) levels of markers of CNS damage and inflammation in Post-COVID-19 patients with persistent headache to hospitalized acute COVID-19 patients with neurological symptoms and to non-COVID-19 disease-controls. CSF levels of neurofilament light chain, Ubiquitin carboxyl-terminal hydrolase L1 and Tau were similar in patients with persistent headache in post-COVID-19 compared to acute COVID-19 patients and all control groups. Levels of glial fibrillary astrocytic protein were lower in patients with persistent headache in post-COVID-19 compared to some control groups of patients with neurological disease. Therefore, our pilot study of CSF markers indicates that persistent post-COVID-19 headache is not a sign of underlying neuronal damage or glial activation.

6.
Nat Immunol ; 24(6): 979-990, 2023 06.
Article in English | MEDLINE | ID: mdl-37188942

ABSTRACT

Antiviral CD8+ T cell immunity depends on the integration of various contextual cues, but how antigen-presenting cells (APCs) consolidate these signals for decoding by T cells remains unclear. Here, we describe gradual interferon-α/interferon-ß (IFNα/ß)-induced transcriptional adaptations that endow APCs with the capacity to rapidly activate the transcriptional regulators p65, IRF1 and FOS after CD4+ T cell-mediated CD40 stimulation. While these responses operate through broadly used signaling components, they induce a unique set of co-stimulatory molecules and soluble mediators that cannot be elicited by IFNα/ß or CD40 alone. These responses are critical for the acquisition of antiviral CD8+ T cell effector function, and their activity in APCs from individuals infected with severe acute respiratory syndrome coronavirus 2 correlates with milder disease. These observations uncover a sequential integration process whereby APCs rely on CD4+ T cells to select the innate circuits that guide antiviral CD8+ T cell responses.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Calibration , Antigen-Presenting Cells , CD8-Positive T-Lymphocytes , CD40 Antigens , Interferon-alpha , CD4-Positive T-Lymphocytes
7.
bioRxiv ; 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37090549

ABSTRACT

The blood proteome holds great promise for precision medicine but poses substantial challenges due to the low abundance of most plasma proteins and the vast dynamic range across the proteome. We report a novel proteomic technology - NUcleic acid Linked Immuno-Sandwich Assay (NULISA™) - that incorporates a dual capture and release mechanism to suppress the assay background and improves the sensitivity of the proximity ligation assay by over 10,000-fold to the attomolar level. It utilizes pairs of antibodies conjugated to DNA oligonucleotides that enable immunocomplex purification and generate reporter DNA containing target- and sample-specific barcodes for a next-generation sequencing-based, highly multiplexed readout. A 200-plex NULISA targeting 124 cytokines and chemokines and 80 other immune response-related proteins demonstrated superior sensitivity for detecting low-abundance proteins and high concordance with other immunoassays. The ultrahigh sensitivity allowed the detection of previously difficult-to-detect, but biologically important, low-abundance biomarkers in patients with autoimmune diseases and COVID-19. Fully automated NULISA addresses longstanding challenges in proteomic analysis of liquid biopsies and makes broad and in-depth proteomic analysis accessible to the general research community and future diagnostic applications.

8.
J Hepatol ; 79(1): 150-166, 2023 07.
Article in English | MEDLINE | ID: mdl-36870611

ABSTRACT

BACKGROUND & AIMS: Patients with chronic liver disease (CLD), including cirrhosis, are at increased risk of intractable viral infections and are hyporesponsive to vaccination. Hallmarks of CLD and cirrhosis include microbial translocation and elevated levels of type I interferon (IFN-I). We aimed to investigate the relevance of microbiota-induced IFN-I in the impaired adaptive immune responses observed in CLD. METHODS: We combined bile duct ligation (BDL) and carbon tetrachloride (CCl4) models of liver injury with vaccination or lymphocytic choriomeningitis virus infection in transgenic mice lacking IFN-I in myeloid cells (LysM-Cre IFNARflox/flox), IFNAR-induced IL-10 (MX1-Cre IL10flox/flox) or IL-10R in T cells (CD4-DN IL-10R). Key pathways were blocked in vivo with specific antibodies (anti-IFNAR and anti-IL10R). We assessed T-cell responses and antibody titers after HBV and SARS-CoV-2 vaccinations in patients with CLD and healthy individuals in a proof-of-concept clinical study. RESULTS: We demonstrate that BDL- and CCL4-induced prolonged liver injury leads to impaired T-cell responses to vaccination and viral infection in mice, subsequently leading to persistent infection. We observed a similarly defective T-cell response to vaccination in patients with cirrhosis. Innate sensing of translocated gut microbiota induced IFN-I signaling in hepatic myeloid cells that triggered excessive IL-10 production upon viral infection. IL-10R signaling in antigen-specific T cells rendered them dysfunctional. Antibiotic treatment and inhibition of IFNAR or IL-10Ra restored antiviral immunity without detectable immune pathology in mice. Notably, IL-10Ra blockade restored the functional phenotype of T cells from vaccinated patients with cirrhosis. CONCLUSION: Innate sensing of translocated microbiota induces IFN-/IL-10 expression, which drives the loss of systemic T-cell immunity during prolonged liver injury. IMPACT AND IMPLICATIONS: Chronic liver injury and cirrhosis are associated with enhanced susceptibility to viral infections and vaccine hyporesponsiveness. Using different preclinical animal models and patient samples, we identified that impaired T-cell immunity in BDL- and CCL4-induced prolonged liver injury is driven by sequential events involving microbial translocation, IFN signaling leading to myeloid cell-induced IL-10 expression, and IL-10 signaling in antigen-specific T cells. Given the absence of immune pathology after interference with IL-10R, our study highlights a potential novel target to reconstitute T-cell immunity in patients with CLD that can be explored in future clinical studies.


Subject(s)
COVID-19 , Interferon Type I , Mice , Animals , Interleukin-10 , SARS-CoV-2 , Mice, Transgenic , Liver Cirrhosis , Mice, Inbred C57BL
9.
Basic Res Cardiol ; 118(1): 6, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36723728

ABSTRACT

Aortic valve stenosis (AS) development is driven by distinct molecular and cellular mechanisms which include inflammatory pathways. Toll-like-receptor-3 (TLR3) is a lysosomal pattern-recognition receptor that binds double-stranded RNA and promotes pro-inflammatory cellular responses. In recent years, TLR3 has emerged as a major regulator of vascular inflammation. The exact role of TLR3 in the development of AS has not been investigated. Isolated human valvular interstitial cells (VICs) were stimulated with the TLR3-agonist polyIC and the resulting pro-inflammatory and pro-osteogenic response measured. Severe AS was induced in wildtype- and TLR3-/- mice via mechanical injury of the aortic valve with a coronary springwire. TLR3 activation was achieved by polyIC injection every 24 h after wire injury, while TLR3 inhibition was realized using Compound 4a (C4a) every 48 h after surgery. Endothelial mesenchymal transition (EndoMT) of human valvular endothelial cells (VECs) was assessed after polyIC stimulation. Stimulation of human VICs with polyIC promoted a strong inflammatory and pro-osteogenic reaction. Similarly, injection of polyIC marginally increased AS development in mice after wire injury. AS induction was significantly decreased in TLR3-/- mice, confirming the role of endogenous TLR3 ligands in AS pathology. Pharmacological inhibition of TLR3 with C4a not only prevented the upregulation of inflammatory cytokines and osteogenic markers in VICs, and EndoMT in VECs, but also significantly abolished the development of AS in vivo. Endogenous TLR3 activation significantly contributes to AS development in mice. Pharmacological inhibition of TLR3 with C4a prevented AS formation. Therefore, targeting TLR3 may be a viable treatment option.


Subject(s)
Aortic Valve Stenosis , Calcinosis , Humans , Mice , Animals , Aortic Valve Stenosis/genetics , Aortic Valve/pathology , Endothelial Cells/metabolism , Toll-Like Receptor 3/metabolism , Cells, Cultured , Calcinosis/genetics , Calcinosis/metabolism , Calcinosis/pathology
10.
Neuro Oncol ; 25(1): 54-67, 2023 01 05.
Article in English | MEDLINE | ID: mdl-35605606

ABSTRACT

BACKGROUND: Diffuse midline gliomas (DMG) are highly invasive brain tumors with rare survival beyond two years past diagnosis and limited understanding of the mechanism behind tumor invasion. Previous reports demonstrate upregulation of the protein ID1 with H3K27M and ACVR1 mutations in DMG, but this has not been confirmed in human tumors or therapeutically targeted. METHODS: Whole exome, RNA, and ChIP-sequencing was performed on the ID1 locus in DMG tissue. Scratch-assay migration and transwell invasion assays of cultured cells were performed following shRNA-mediated ID1-knockdown. In vitro and in vivo genetic and pharmacologic [cannabidiol (CBD)] inhibition of ID1 on DMG tumor growth was assessed. Patient-reported CBD dosing information was collected. RESULTS: Increased ID1 expression in human DMG and in utero electroporation (IUE) murine tumors is associated with H3K27M mutation and brainstem location. ChIP-sequencing indicates ID1 regulatory regions are epigenetically active in human H3K27M-DMG tumors and prenatal pontine cells. Higher ID1-expressing astrocyte-like DMG cells share a transcriptional program with oligo/astrocyte-precursor cells (OAPCs) from the developing human brain and demonstrate upregulation of the migration regulatory protein SPARCL1. Genetic and pharmacologic (CBD) suppression of ID1 decreases tumor cell invasion/migration and tumor growth in H3.3/H3.1K27M PPK-IUE and human DIPGXIIIP* in vivo models of pHGG. The effect of CBD on cell proliferation appears to be non-ID1 mediated. Finally, we collected patient-reported CBD treatment data, finding that a clinical trial to standardize dosing may be beneficial. CONCLUSIONS: H3K27M-mediated re-activation of ID1 in DMG results in a SPARCL1+ migratory transcriptional program that is therapeutically targetable with CBD.


Subject(s)
Brain Neoplasms , Glioma , Animals , Humans , Mice , Brain/pathology , Brain Neoplasms/genetics , Calcium-Binding Proteins , Extracellular Matrix Proteins/genetics , Glioma/genetics , Histones/genetics , Inhibitor of Differentiation Protein 1/genetics , Mutation , Signal Transduction
11.
J Cardiovasc Transl Res ; 16(2): 491-501, 2023 04.
Article in English | MEDLINE | ID: mdl-36178662

ABSTRACT

The endocannabinoid 2-arachidonoylglycerol (2-AG) is an inflammatory mediator and ligand for the cannabinoid receptors CB1 and CB2. We investigated the atherogenic mechanisms set in motion by 2-AG. Therefore, we created two atherosclerotic mouse models with distinct cell-specific knockouts of the CB2 receptor on either myeloid or endothelial cells. These mice were treated with JZL184, resulting in elevated plasma levels of 2-AG. After a high-fat high-cholesterol diet, atherosclerotic plaques were analyzed. The atherogenic effect of 2-AG was abrogated in mice lacking myeloid expression of the CB2 receptor but not in mice lacking endothelial expression of the CB2 receptor. In vitro, treatment of human monocytes with 2-AG led to the increased production of reactive oxygen species (ROS) and IL-1ß. In conclusion, 2-AG shows an atherogenic effect in vivo, dependent on the presence of the CB2 receptor on myeloid cells. In addition, our in vitro data revealed 2-AG to promote inflammatory signalling in monocytes. 2-Arachidonoylglycerol shows an atherogenic effect that is abrogated in mice lacking myeloid expression of the CB2 receptor.


Subject(s)
Atherosclerosis , Endocannabinoids , Mice , Humans , Animals , Endocannabinoids/metabolism , Receptor, Cannabinoid, CB2 , Endothelial Cells/metabolism , Atherosclerosis/metabolism
12.
Neurol Res Pract ; 4(1): 53, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36310154

ABSTRACT

Recent studies have indicated that long-term neurological sequelae after COVID-19 are not accompanied by an increase of canonical biomarkers of central nervous system injury in blood, but subgroup stratifications are lacking. This is a particular concern in chronic headache, which can be a leading symptom of Post-COVID diseases associated with neuronal damage such as vasculitis or autoimmune encephalitis. We here compared patients with mild Post-COVID-19 syndrome and persistent headache (persistent Post-COVID-19 headache) lasting longer than 12 weeks after the initial serological diagnosis, to patients with mild and severe COVID-19 and COVID-19-negative controls. Levels of neurofilament light chain and glial fibrillary astrocytic protein, i.e. markers of neuronal damage and reactive astrogliosis, were lower in blood from patients with persistent Post-COVID-19 headache compared to patients with severe COVID-19. Hence, our pilot serological study indicates that long-term Post-COVID-19 headache may not be a sign of underlying neuronal damage or neuroinflammation.

13.
J Infect Dis ; 225(10): 1688-1693, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35323975

ABSTRACT

We compared the ability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike-specific antibodies to induce natural killer cell-mediated antibody-dependent cellular cytotoxicity (ADCC) in patients with natural infection and vaccinated persons. Analyzing plasma samples from 39 coronavirus disease 2019 (COVID-19) patients and 11 vaccinated individuals, significant induction of ADCC could be observed over a period of more than 3 months in both vaccinated and recovered individuals. Although plasma antibody concentrations were lower in recovered patients, we found antibodies elicited by natural infection induced a significantly stronger ADCC response compared to those induced by vaccination, which may affect protection conferred by vaccination.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Antibody-Dependent Cell Cytotoxicity , COVID-19/prevention & control , Humans , Killer Cells, Natural , Spike Glycoprotein, Coronavirus , Vaccination
14.
Immunity ; 54(11): 2650-2669.e14, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34592166

ABSTRACT

Longitudinal analyses of the innate immune system, including the earliest time points, are essential to understand the immunopathogenesis and clinical course of coronavirus disease (COVID-19). Here, we performed a detailed characterization of natural killer (NK) cells in 205 patients (403 samples; days 2 to 41 after symptom onset) from four independent cohorts using single-cell transcriptomics and proteomics together with functional studies. We found elevated interferon (IFN)-α plasma levels in early severe COVD-19 alongside increased NK cell expression of IFN-stimulated genes (ISGs) and genes involved in IFN-α signaling, while upregulation of tumor necrosis factor (TNF)-induced genes was observed in moderate diseases. NK cells exert anti-SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) activity but are functionally impaired in severe COVID-19. Further, NK cell dysfunction may be relevant for the development of fibrotic lung disease in severe COVID-19, as NK cells exhibited impaired anti-fibrotic activity. Our study indicates preferential IFN-α and TNF responses in severe and moderate COVID-19, respectively, and associates a prolonged IFN-α-induced NK cell response with poorer disease outcome.


Subject(s)
COVID-19/immunology , Interferon-alpha/immunology , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , Tumor Necrosis Factor-alpha/metabolism , Base Sequence , Humans , Immunity, Innate/immunology , Inflammation/immunology , Interferon-alpha/blood , Pulmonary Fibrosis/pathology , RNA-Seq , Severity of Illness Index , Transcriptome/genetics , United Kingdom , United States
15.
Cell ; 184(20): 5089-5106.e21, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34555357

ABSTRACT

Microglia are the CNS resident immune cells that react to misfolded proteins through pattern recognition receptor ligation and activation of inflammatory pathways. Here, we studied how microglia handle and cope with α-synuclein (α-syn) fibrils and their clearance. We found that microglia exposed to α-syn establish a cellular network through the formation of F-actin-dependent intercellular connections, which transfer α-syn from overloaded microglia to neighboring naive microglia where the α-syn cargo got rapidly and effectively degraded. Lowering the α-syn burden attenuated the inflammatory profile of microglia and improved their survival. This degradation strategy was compromised in cells carrying the LRRK2 G2019S mutation. We confirmed the intercellular transfer of α-syn assemblies in microglia using organotypic slice cultures, 2-photon microscopy, and neuropathology of patients. Together, these data identify a mechanism by which microglia create an "on-demand" functional network in order to improve pathogenic α-syn clearance.


Subject(s)
Cell Membrane Structures/metabolism , Microglia/metabolism , Proteolysis , alpha-Synuclein/metabolism , Actins/metabolism , Aged , Aged, 80 and over , Animals , Apoptosis , Cytoskeleton/metabolism , Down-Regulation , Female , Humans , Inflammation/genetics , Inflammation/pathology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Male , Mice, Inbred C57BL , Microglia/pathology , Microglia/ultrastructure , Mitochondria/metabolism , Nanotubes , Protein Aggregates , Reactive Oxygen Species/metabolism , Transcriptome/genetics
16.
Nat Commun ; 12(1): 4643, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34330919

ABSTRACT

The stress response is an essential mechanism for maintaining homeostasis, and its disruption is implicated in several psychiatric disorders. On the cellular level, stress activates, among other mechanisms, autophagy that regulates homeostasis through protein degradation and recycling. Secretory autophagy is a recently described pathway in which autophagosomes fuse with the plasma membrane rather than with lysosomes. Here, we demonstrate that glucocorticoid-mediated stress enhances secretory autophagy via the stress-responsive co-chaperone FK506-binding protein 51. We identify the matrix metalloproteinase 9 (MMP9) as one of the proteins secreted in response to stress. Using cellular assays and in vivo microdialysis, we further find that stress-enhanced MMP9 secretion increases the cleavage of pro-brain-derived neurotrophic factor (proBDNF) to its mature form (mBDNF). BDNF is essential for adult synaptic plasticity and its pathway is associated with major depression and posttraumatic stress disorder. These findings unravel a cellular stress adaptation mechanism that bears the potential of opening avenues for the understanding of the pathophysiology of stress-related disorders.


Subject(s)
Autophagy/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Dexamethasone/pharmacology , Matrix Metalloproteinase 9/metabolism , Animals , Autophagosomes/metabolism , Cell Line , Cell Line, Tumor , Cell Membrane/metabolism , Glucocorticoids/pharmacology , HEK293 Cells , Humans , Mice, Knockout , Neuronal Plasticity/drug effects , Signal Transduction/drug effects , Stress, Physiological
17.
Nat Commun ; 12(1): 1931, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33771993

ABSTRACT

The COVID-19 pandemic continues to have an unprecedented impact on societies and economies worldwide. There remains an ongoing need for high-performance SARS-CoV-2 tests which may be broadly deployed for infection monitoring. Here we report a highly sensitive single molecule array (Simoa) immunoassay in development for detection of SARS-CoV-2 nucleocapsid protein (N-protein) in venous and capillary blood and saliva. In all matrices in the studies conducted to date we observe >98% negative percent agreement and >90% positive percent agreement with molecular testing for days 1-7 in symptomatic, asymptomatic, and pre-symptomatic PCR+ individuals. N-protein load decreases as anti-SARS-CoV-2 spike-IgG increases, and N-protein levels correlate with RT-PCR Ct-values in saliva, and between matched saliva and capillary blood samples. This Simoa SARS-CoV-2 N-protein assay effectively detects SARS-CoV-2 infection via measurement of antigen levels in blood or saliva, using non-invasive, swab-independent collection methods, offering potential for at home and point of care sample collection.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/blood , SARS-CoV-2/metabolism , Saliva/virology , COVID-19/epidemiology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/genetics , Epidemics , Home Care Services , Humans , Point-of-Care Systems , ROC Curve , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Specimen Handling/methods
18.
Cell Rep ; 31(6): 107615, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32402278

ABSTRACT

The inflammasomes control the bioactivity of pro-inflammatory cytokines of the interleukin (IL)-1 family. The inflammasome assembled by NLRP3 has been predominantly studied in homogeneous cell populations in vitro, neglecting the influence of cellular interactions that occur in vivo. Here, we show that platelets boost the inflammasome capacity of human macrophages and neutrophils and are critical for IL-1 production by monocytes. Platelets license NLRP3 transcription, thereby enhancing ASC oligomerization, caspase-1 activity, and IL-1ß secretion. Platelets influence IL-1ß production in vivo, and blood platelet counts correlate with plasmatic IL-1ß levels in malaria. Furthermore, we reveal an enriched platelet gene signature among the highest-expressed transcripts in IL-1ß-driven autoinflammatory diseases. The platelet effect is independent of cell-to-cell contact, platelet-derived lipid mediators, purines, nucleic acids, and a host of platelet cytokines, and it involves the triggering of calcium-sensing receptors on macrophages. Hence, platelets provide an additional layer of regulation of inflammasomes and IL-1-driven inflammation.


Subject(s)
Blood Platelets/immunology , Immunity, Innate/immunology , Inflammasomes/metabolism , Interleukin-1beta/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Humans
19.
Sci Transl Med ; 12(536)2020 03 25.
Article in English | MEDLINE | ID: mdl-32213629

ABSTRACT

The Western diet is rich in salt, which poses various health risks. A high-salt diet (HSD) can stimulate immunity through the nuclear factor of activated T cells 5 (Nfat5)-signaling pathway, especially in the skin, where sodium is stored. The kidney medulla also accumulates sodium to build an osmotic gradient for water conservation. Here, we studied the effect of an HSD on the immune defense against uropathogenic E. coli-induced pyelonephritis, the most common kidney infection. Unexpectedly, pyelonephritis was aggravated in mice on an HSD by two mechanisms. First, on an HSD, sodium must be excreted; therefore, the kidney used urea instead to build the osmotic gradient. However, in contrast to sodium, urea suppressed the antibacterial functionality of neutrophils, the principal immune effectors against pyelonephritis. Second, the body excretes sodium by lowering mineralocorticoid production via suppressing aldosterone synthase. This caused an accumulation of aldosterone precursors with glucocorticoid functionality, which abolished the diurnal adrenocorticotropic hormone-driven glucocorticoid rhythm and compromised neutrophil development and antibacterial functionality systemically. Consistently, under an HSD, systemic Listeria monocytogenes infection was also aggravated in a glucocorticoid-dependent manner. Glucocorticoids directly induced Nfat5 expression, but pharmacological normalization of renal Nfat5 expression failed to restore the antibacterial defense. Last, healthy humans consuming an HSD for 1 week showed hyperglucocorticoidism and impaired antibacterial neutrophil function. In summary, an HSD suppresses intrarenal neutrophils Nfat5-independently by altering the local microenvironment and systemically by glucocorticoid-mediated immunosuppression. These findings argue against high-salt consumption during bacterial infections.


Subject(s)
Escherichia coli , Neutrophils , Animals , Anti-Bacterial Agents , Diet , Mice , Sodium Chloride, Dietary
20.
Pharmacol Ther ; 208: 107476, 2020 04.
Article in English | MEDLINE | ID: mdl-31931100

ABSTRACT

Sepsis, a life threating syndrome characterized by organ failure after infection, is the most common cause of death in hospitalized patients. The treatment of sepsis is generally supportive in nature, involving the administration of intravenous fluids, vasoactive substances and oxygen plus antibiotics to eliminate the pathogen. No drugs have been approved specifically for the treatment of sepsis, and clinical trials of potential therapies have failed to reduce mortality - suggesting that new approaches are needed. Abnormalities in the immune response elicited by the pathogen, ranging from excessive inflammation to immunosuppression, contribute to disease pathogenesis. Although hundreds of immunomodulatory agents are potentially available, it remains unclear which patient benefits from which immune therapy at a given time point. Results indicate the importance of personalized therapy, specifically the need to identify the type of intervention required by each individual patient at a given point in the disease process. To address this issue will require using biomarkers to stratify patients based on their individual immune status. This article reviews recent and ongoing clinical investigations using immunostimulatory or immunosuppressive therapies against sepsis including non-pharmacological and novel preclinical approaches.


Subject(s)
Immunotherapy , Sepsis/therapy , Animals , Humans , Immunomodulation , Inflammation/immunology , Inflammation/therapy , Sepsis/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...