Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 62(46): 18789-18803, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37921553

ABSTRACT

We report on the synthesis of the new bis(alkenylruthenium) complex DBTTF-(ViRu)2 with a longitudinally extended, π-conjugated dibenzotetrathiafulvalene (DBTTF) bridge, characterized by multinuclear NMR, IR, and UV/vis spectroscopy, mass spectrometry, and single-crystal X-ray diffraction. Cyclic and square-wave voltammetry revealed that DBTTF-(ViRu)2 undergoes four consecutive oxidations. IR, UV/vis/near-IR, and electron paramagnetic resonance spectroscopy indicate that the first oxidation involves the redox-noninnocent DBTTF bridge, while the second oxidation is biased toward one of the peripheral styrylruthenium entities, thereby generating an electronically coupled mixed-valent state ({Ru}-CH═CH)•+-DBTTF•+-(CH═CH-{Ru}) [{Ru} = Ru(CO)Cl(PiPr3)2]. The latter is apparently in resonance with the ({Ru}-CH═CH)•+-DBTTF-(CH═CH-{Ru})•+ and ({Ru}-CH═CH)-DBTTF2+-(CH═CH-{Ru}) forms, which are calculated to lie within 19 kJ/mol. Higher oxidized forms proved too unstable for further characterization. The reaction of DBTTF-(ViRu)2 with the strong organic acceptors 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, tetracyano-p-benzoquinodimethane (TCNQ), and F4TCNQ resulted in formation of the DBTTF-(ViRu)2•+ radical cation, as shown by various spectroscopic techniques. Solid samples of these compounds were found to be highly amorphous and electrically insulating.

2.
ACS Omega ; 8(20): 18106-18115, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37251118

ABSTRACT

Inorganic-organic metal halide perovskite solar cells (PSCs) show power conversion efficiency values approaching those of state-of-the-art silicon solar cells. In a quest to find suitable charge transport materials in PSCs, hematite (α-Fe2O3) has emerged as a potential electron transport layer (ETL) in n-i-p planar PSCs due to its low cost, UV light stability, and nontoxicity. Yet, the performance of α-Fe2O3-based PSCs is far lower than that of state-of-the-art PSCs owing to the poor quality of the α-Fe2O3 ETL. In this work, solvent-assisted crystallization of α-Fe2O3 ETLs was carried out to examine the impact of solvents on the optoelectronic properties of α-Fe2O3 thin films. Among the various solvents used in this study (deionized water, ethanol, iso-propanol, and iso-butanol), optimized ethanol-based α-Fe2O3 ETLs lead to champion device performance with a power conversion efficiency of 13% with a reduced hysteresis index of 0.04 in an n-i-p-configured PSC. The PSC also exhibited superior long-term inert and ambient stabilities compared to a reference device made using a SnO2 ETL. Through a series of experiments spanning structural, morphological, and optoelectronic properties of the various α-Fe2O3 thin films and their devices, we provide insights into the reasons for the improved photovoltaic performance. It is noted that the formation of a pinhole-free compact morphology of ETLs facilitates crack-free surface coverage of the perovskite film atop an α-Fe2O3 ETL, reduces interfacial recombination, and enhances charge transfer efficiency. This work opens up the route toward novel ETLs for the development of efficient and photo-stable PSCs.

3.
RSC Adv ; 13(6): 3652-3660, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36756575

ABSTRACT

Three binary charge-transfer (CT) compounds resulting from the donor 2,2' : 6',2'' : 6'',6-trioxotriphenylamine (TOTA) and the acceptors F4TCNQ and F4BQ and of a pyrene-annulated azaacene (PAA) with the acceptor F4TCNQ are reported. The identity of these CT compounds are confirmed by single-crystal X-ray diffraction as well as by IR, UV-vis-NIR and EPR spectroscopy. X-ray diffraction analysis reveals a 1 : 1 stoichiometry for TOTA·F4TCNQ, a 2 : 1 donor : acceptor ratio in (TOTA)2·F4BQ, and a rare 4 : 1 stoichiometry in (PAA)4·F4TCNQ, respectively. Metrical parameters of the donor (D) and acceptor (A) constituents as well as IR spectra indicate full CT in TOTA·F4TCNQ, partial CT in (TOTA)2·F4BQ and only a very modest one in (PAA)4·F4TCNQ. Intricate packing motifs are present in the crystal lattice with encaged, π-stacked (F4TCNQ-)2 dimers in TOTA·F4TCNQ or mixed D/A stacks in the other two compounds. Their solid-state UV-vis-NIR spectra feature CT transitions. The CT compounds with F4TCNQ are electrical insulators, while (TOTA)2·F4BQ is weakly conducting.

4.
Chemistry ; 28(23): e202104403, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35235235

ABSTRACT

The synthesis of dinuclear ruthenium alkenyl complexes with {Ru(CO)(Pi Pr3 )2 (L)} entities (L=Cl- in complexes Ru2 -3 and Ru2 -7; L=acetylacetonate (acac- ) in complexes Ru2 -4 and Ru2 -8) and with π-conjugated 2,7-divinylphenanthrenediyl (Ru2 -3, Ru2 -4) or 5,8-divinylquinoxalinediyl (Ru2 -7, Ru2 -8) as bridging ligands are reported. The bridging ligands are laterally π-extended by anellating a pyrene (Ru2 -7, Ru2 -8) or a 6,7-benzoquinoxaline (Ru2 -3, Ru2 -4) π-perimeter. This was done with the hope that the open π-faces of the electron-rich complexes will foster association with planar electron acceptors via π-stacking. The dinuclear complexes were subjected to cyclic and square-wave voltammetry and were characterized in all accessible redox states by IR, UV/Vis/NIR and, where applicable, by EPR spectroscopy. These studies signified the one-electron oxidized forms of divinylphenylene-bridged complexes Ru2 -7, Ru2 -8 as intrinsically delocalized mixed-valent species, and those of complexes Ru2 -3 and Ru2 -4 with the longer divinylphenanthrenediyl linker as partially localized on the IR, yet delocalized on the EPR timescale. The more electron-rich acac- congeners formed non-conductive 1 : 1 charge-transfer (CT) salts on treatment with the F4 TCNQ electron acceptor. All spectroscopic techniques confirmed the presence of pairs of complex radical cations and F4 TCNQ.- radical anions in these CT salts, but produced no firm evidence for the relevance of π-stacking to their formation and properties.

5.
Nanomaterials (Basel) ; 11(11)2021 Nov 13.
Article in English | MEDLINE | ID: mdl-34835821

ABSTRACT

Hybrid perovskite materials are one of the most promising candidates for optoelectronic applications, e.g., solar cells and LEDs, which can be produced at low cost compared to established materials. Although this field of research has seen a huge upsurge in the past decade, there is a major lack in understanding the underlying processes, such as shape-property relationships and the role of defects. Our aerosol-assisted synthesis pathway offers the possibility to obtain methylammonium lead bromide (MAPbBr3) microcrystals from a liquid single source precursor. The differently shaped particles are aligned on several substrates, without using a directing agent or other additives. The obtained particles show good stability under dry conditions. This allows us to characterize these materials and their pure surfaces at the single-crystal level using time- and spatially resolved methods, without any influences of size-dependent effects. By optimizing the precursor for the aerosol process, we were able to eliminate any purification steps and use the materials as processed. In addition, we performed theoretical simulations to deepen the understanding of the underlying processes in the formation of the different crystal facets and their specific properties. The model system presented provides insights into the shape-related properties of MAPbBr3 single crystals and their directed but ligand-free synthesis.

6.
Opt Express ; 28(20): 29513-29528, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-33114850

ABSTRACT

Plasmonic metamaterials enable extraordinary manipulation of key constitutive properties of light at a subwavelength scale and thus have attracted significant interest. Here, we report a simple and convenient nanofabrication method for a novel meta-device by glancing deposition of gold into anodic aluminum oxide templates on glass substrates. A methodology with the assistance of ellipsometric measurements to examine the anisotropy and optical activity properties is presented. A tunable polarization conversion in both transmission and reflection is demonstrated. Specifically, giant broadband circular dichroism for reflection at visible wavelengths is experimentally realized by oblique incidence, due to the extrinsic chirality resulting from the mutual orientation of the metamaterials and the incident beam. This work paves the way for practical applications for large-area, low-cost polarization modulators, polarization imaging, displays, and bio-sensing.

7.
ACS Appl Mater Interfaces ; 12(20): 23363-23369, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32321245

ABSTRACT

In the present study, the memristive characteristics of hydrothermally grown TiO2 nanorod arrays, particularly, the difference in the retention time of the resistance state, are investigated in dependence of the array growth temperature. A volatile behavior is observed and related to a redistribution of oxygen vacancies over time. It is shown that the retention time increases for increasing array growth temperatures from several seconds up to 20 min. The relaxation behavior is also seen in the current-voltage characteristics, which do not show the common unipolar, bipolar, or complementary switching behavior. Instead, the temporal evolution depends on the duration of the applied voltage and on the nanowire growth temperature. Therefore, electronic measurements are combined with scanning electron and scanning transmission electron microscopy, so that the amount of oxygen defect-rich grain boundaries in the upper part of the nanowires can be linked to the differences in the current-voltage behavior and retention time.

8.
Beilstein J Nanotechnol ; 11: 466-479, 2020.
Article in English | MEDLINE | ID: mdl-32274286

ABSTRACT

In the vast majority of studies on semiconductor particles ligands or capping agents are used that bind to the surface of the particles covering them with an electrically insulating shell. Since the transport of charge carriers and/or energy across interfaces is desirable for a variety of applications, the use of π-conjugated ligands becomes increasingly interesting. Among them are compounds that react to external stimuli. Molecular switches in particular are fascinating because the properties of the interfaces can be potentially adjusted as required. However, there is debate about how the properties of such special ligands are influenced by the presence of a semiconductor and vice versa. Here ammonium-modified azobenzene compounds were selected as prototypes for molecular switches and organic-inorganic hybrid perovskites as semiconductor materials. The class of ammonium-lead-halide phases as prototypes is peculiar because, in addition to the surface functionalization of 3D crystals, organic compounds can actually be incorporated into the crystal as 2D phases. Thus, for example, layered Ruddlesden-Popper phases are obtained. We present photoswitchable azobenzene ligands with different head-group lengths for the synthesis of 2D and 3D hybrid perovskite phases. The energy transfer mechanisms are influenced by the length of the molecular spacer moiety, which determines the distance between the π system and the semiconductor surfaces. We find huge differences in the photoswitching behaviour between the free, surface-coordinated and integrated ligands between the perovskite layers. Photoswitching of azobenzene ligands incorporated in 2D phases is nearly quenched, while the same mechanism for surface-coordinating ligands is greatly improved, compared to the free ligands. The improvement originates from an energy transfer from perovskite to azobenzene, which is strongly distance-dependent. This study provides evidence for the photoswitching of azobenzenes as ligands of hybrid perovskites, which depends on the spacing between the chromophore and the perovskite phase.

9.
RSC Adv ; 10(40): 24119-24126, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-35517361

ABSTRACT

We report a new procedure for large scale, reproducible and fast synthesis of polycrystalline, dense, vertically aligned α-MoO3 nanostructures on conducting (FTO) and non-conducting substrates (Si/SiO2) by using a simple, low-cost hydrothermal technique. The synthesis method consists of two steps, firstly formation of a thermally evaporated Cr/MoO3 seed layer, and secondly growth of the nanostructures in a highly acidic precursor solution. In this report, we document a growth process of vertically aligned α-MoO3 nanostructures with varying growth parameters, such as pH and precursor concentration influencing the resulting structure. Vertically aligned MoO3 nanostructures are valuable for different applications such as electrode material for organic and dye-sensitized solar cells, as a photocatalyst, and in Li-ion batteries, display devices and memory devices due to their high surface area.

10.
ACS Appl Mater Interfaces ; 12(1): 1120-1131, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31829007

ABSTRACT

Photovoltaic devices based on organic semiconductors and organo-metal halide perovskites have not yet reached the theoretically predicted power conversion efficiencies while they still exhibit poor environmental stability. Interfacial engineering using suitable materials has been recognized as an attractive approach to tackle the above issues. We introduce here a zinc porphyrin-triazine-bodipy donor-π bridge-acceptor dye as a universal electron transfer mediator in both organic and perovskite solar cells. Thanks to its "push-pull" character, this dye enhances electron transfer from the absorber layer toward the electron-selective contact, thus improving the device's photocurrent and efficiency. The direct result is more than 10% average power conversion efficiency enhancement in both fullerene-based (from 8.65 to 9.80%) and non-fullerene-based (from 7.71 to 8.73%) organic solar cells as well as in perovskite ones (from 14.56 to 15.67%), proving the universality of our approach. Concurrently, by forming a hydrophobic network on the surface of metal oxide substrates, it improves the nanomorphology of the photoactive overlayer and contributes to efficiency stabilization. The fabricated devices of both kinds preserved more than 85% of their efficiency upon exposure to ambient conditions for more than 600 h without any encapsulation.

11.
Nanotechnology ; 30(33): 335302, 2019 Aug 16.
Article in English | MEDLINE | ID: mdl-30986780

ABSTRACT

For potential applications of nanostructures, control over their position is important. In this report, we introduce two continuous wave laser-based lithography techniques which allow texturing thin TiO2 films to create a fine rutile TiO2 structure on silicon via spatially confined oxidation or a solid-liquid-solid phase transition, for initial layers, we use titanium and anatase TiO2, respectively. A frequency-doubled Nd:YAG laser at a wavelength of 532 nm is employed for the lithography process and the samples are characterized with scanning electron microscopy. The local orientation of the created rutile crystals is determined by the spatial orientation of hydrothermally grown rutile TiO2 nanorods. Depending on the technique, we obtain either randomly aligned or highly ordered nanorod ensembles. An additional chemically inert SiO2 cover layer suppresses the chemical and electronic surface properties of TiO2 and is removed locally with the laser treatment. Hence, the resulting texture provides a specific topography and crystal structure as well as a high contrast of surface properties on a nanoscale, including the position-controlled growth of TiO2 nanorods.

12.
Adv Mater ; 31(47): e1807095, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31012172

ABSTRACT

Organic-inorganic halide perovskites are making breakthroughs in a range of optoelectronic devices. Reports of >23% certified power conversion efficiency in photovoltaic devices, external quantum efficiency >21% in light-emitting diodes (LEDs), continuous-wave lasing and ultralow lasing thresholds in optically pumped lasers, and detectivity in photodetectors on a par with commercial GaAs rivals are being witnessed, making them the fastest ever emerging material technology. Still, questions on their toxicity and long-term stability raise concerns toward their market entry. The intrinsic instability in these materials arises due to the organic cation, typically the volatile methylamine (MA), which contributes to hysteresis in the current-voltage characteristics and ion migration. Alternative inorganic substitutes to MA, such as cesium, and large organic cations that lead to a layered structure, enhance structural as well as device operational stability. These perovskites also provide a high exciton binding energy that is a prerequisite to enhance radiative emission yield in LEDs. The incorporation of inorganic and layered perovskites, in the form of polycrystalline films or as single-crystalline nanostructure morphologies, is now leading to the demonstration of stable devices with excellent performance parameters. Herein, key developments made in various optoelectronic devices using these perovskites are summarized and an outlook toward stable yet efficient devices is presented.

13.
Beilstein J Nanotechnol ; 10: 412-418, 2019.
Article in English | MEDLINE | ID: mdl-30800580

ABSTRACT

In this article, we demonstrate the position-controlled hydrothermal growth of rutile TiO2 nanorods using a new scanning probe lithography method in which a silicon tip, commonly used for atomic force microscopy, was pulled across an anatase TiO2 film. This process scratches the film causing tiny anatase TiO2 nanoparticles to form on the surface. According to previous reports, these anatase particles convert into rutile nanocrystals and provide the growth of rutile TiO2 nanorods in well-defined areas. Due to the small tip radius, the resolution of this method is excellent and the method is quite inexpensive compared to electron-beam lithography and similar methods providing a position-controlled growth of semiconducting TiO2 nanostructures.

14.
Sci Rep ; 9(1): 74, 2019 Jan 11.
Article in English | MEDLINE | ID: mdl-30635589

ABSTRACT

Hybrid organic-inorganic heterointerfaces in solar cells suffer from inefficient charge separation yet the origin of performance limitations are widely unknown. In this work, we focus on the role of metal oxide-polymer interface energetics in a charge generation process. For this purpose, we present novel benzothiadiazole based thiophene oligomers that tailor the surface energetics of the inorganic acceptor TiO2 systematically. In a simple bilayer structure with the donor polymer poly(3-hexylthiophene) (P3HT), we are able to improve the charge generation process considerably. By means of an electronic characterization of solar cell devices in combination with ultrafast broadband transient absorption spectroscopy, we demonstrate that this remarkable improvement in performance originates from reduced recombination of localized charge transfer states. In this context, fundamental design rules for interlayers are revealed, which assist the charge separation at organic-inorganic interfaces. Beside acting as a physical spacer in between electrons and holes, interlayers should offer (1) a large energy offset to drive exciton dissociation, (2) a push-pull building block to reduce the Coulomb binding energy of charge transfer states and (3) an energy cascade to limit carrier back diffusion towards the interface.

15.
Phys Chem Chem Phys ; 20(48): 30189-30199, 2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30489581

ABSTRACT

The employment of bulky aliphatic cations in the manufacture of moisture-stable materials has triggered the development and application of 2D/3D perovskites as sensitizers in moisture-stable solar cells. Although it is true that the moisture stability increases, it is also true that the photovoltaic performance of 2D/3D PVK materials is severely limited owing to quantum and dielectric confinement effects. Accordingly, it is necessary the synthesis and deep optical characterization of materials with an adequate management of dielectric contrast between the layers. Here, we demonstrate the successful tuning of dielectric confinement by the inclusion of a conjugated molecule, as a bulky cation, in the fabrication of the 2D/3D PVK material (C6H5NH3)2(CH3NH3)n-1PbnI3n+1, where n = 3 or 5. The absence of excitonic states related to n ≥ 1 at room temperature, as well as the very low concentration of excitons after 1 ps of excitation of samples in which n ≥ 3, provide strong evidence of an excellent ability to dissociate excitons into free charge carriers. As consequence films with low n, presenting higher stability than standard 3D perovskites, improved significantly their performance, showing one of the highest short circuit current density (Jsc ≈ 13.8) obtained to date for perovskite materials within the 2D limit (n < 10).

16.
ACS Appl Mater Interfaces ; 10(49): 42542-42551, 2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30430822

ABSTRACT

Solar cells based on organic-inorganic halide perovskites are now leading the photovoltaic technologies because of their high power conversion efficiency. Recently, there have been debates on the microstructure-related defects in metal halide perovskites (grain size, grain boundaries, etc.) and a widespread view is that large grains are a prerequisite to suppress nonradiative recombination and improve photovoltaic performance, although opinions against it also exist. Herein, we employ blends of methylammonium lead iodide perovskites with an insulating polymer (polyvinylpyrrolidone) that offer the possibility to tune the grain size in order to obtain a fundamental understanding of the photoresponse at the microscopic level. We provide, for the first time, spatially resolved details of the microstructures in such blend systems via Raman mapping, light beam-induced current imaging, and conductive atomic force microscopy. Although the polymer blend systems systematically alter the morphology by creating small grains (more grain boundaries), they reduce nonradiative recombination within the film and enhance its spatial homogeneity of radiative recombination. We attribute this to a reduction in the density of bulk trap states, as evidenced by an order of magnitude higher photoluminescence intensity and a significantly higher open-circuit voltage when the polymer is incorporated into the perovskite films. The solar cells employing blend systems also show nearly hysteresis-free power conversion efficiency ∼17.5%, as well as a remarkable shelf-life stability over 100 days.

17.
Sci Rep ; 8(1): 3559, 2018 Feb 23.
Article in English | MEDLINE | ID: mdl-29476065

ABSTRACT

ZnO is a widely used metal-oxide semiconductor for photovoltaic application. In solar cell heterostructures they not only serve as a charge selective contact, but also act as electron acceptor. Although ZnO offers a suitable interface for exciton dissociation, charge separation efficiencies have stayed rather poor and conceptual differences to organic acceptors are rarely investigated. In this work, we employ Sn doping to ZnO nanowires in order to understand the role of defect and surface states in the charge separation process. Upon doping we are able to modify the metal-oxide work function and we show its direct correlation with the charge separation efficiency. For this purpose, we use the polymer poly(3-hexylthiophene) as donor and the squaraine dye SQ2 as interlayer. Interestingly, neither mobilities nor defects are prime performance limiting factor, but rather the density of available states around the conduction band is of crucial importance for hybrid interfaces. This work highlights crucial aspects to improve the charge generation process of metal-oxide based solar cells and reveals new strategies to improve the power conversion efficiency of hybrid solar cells.

18.
J Phys Chem Lett ; 8(19): 4858-4864, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28925705

ABSTRACT

In this work, we investigate the exciton dissociation dynamics occurring at the donor:acceptor interface in organic and hybrid blends employed in the realization of photovoltaic cells. Fundamental differences in the charge separation process are studied with the organic semiconductor polymer poly(3-hexylthiophene) (P3HT) and either [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) or titanium dioxide (TiO2) acting as the acceptor. By using ultrafast broad-band transient absorption spectroscopy with few-fs temporal resolution, we observe that in both cases the incoherent formation of free charges dominates the charge generation process. From the optical response of the polymer and by tracking the excited-state absorption, we extract pivotal similarities in the incoherent energy pathways that follow the impulsive excitation. On time scales shorter than 200 fs, we observe that the two acceptors display similar dynamics in the exciton delocalization. Significant differences arise only on longer time scales with only an impact on the overall photocarrier generation efficiency.

19.
Nanomaterials (Basel) ; 7(10)2017 Sep 23.
Article in English | MEDLINE | ID: mdl-28946626

ABSTRACT

Hydrothermally grown rutile TiO2 nanowires are intrinsically full of lattice defects, especially oxygen vacancies. These vacancies have a significant influence on the structural and electronic properties of the nanowires. In this study, we report a post-growth heat treatment in different environments that allows control of the distribution of these defects inside the nanowire, and thus gives direct access to tuning of the properties of rutile TiO2 nanowires. A detailed transmission electron microscopy study is used to analyze the structural changes inside the nanowires which are correlated to the measured optical and electrical properties. The highly defective as-grown nanowire arrays have a white appearance and show typical semiconducting properties with n-type conductivity, which is related to the high density of oxygen vacancies. Heat treatment in air atmosphere leads to a vacancy condensation and results in nanowires which possess insulating properties, whereas heat treatment in N2 atmosphere leads to nanowire arrays that appear black and show almost metal-like conductivity. We link this high conductivity to a TiO2-x shell which forms during the annealing process due to the slightly reducing N2 environment.

20.
ACS Omega ; 2(6): 2925-2934, 2017 Jun 30.
Article in English | MEDLINE | ID: mdl-31457627

ABSTRACT

We report comparative field electron emission (FE) studies on a large-area array of two-dimensional MoS2-coated @ one-dimensional (1D) brookite (ß) TiO2 nanorods synthesized on Si substrate utilizing hot-filament metal vapor deposition technique and pulsed laser deposition method, independently. The 10 nm wide and 760 nm long 1D ß-TiO2 nanorods were coated with MoS2 layers of thickness ∼4 (±2), 20 (±3), and 40 (±3) nm. The turn-on field (E on) of 2.5 V/µm required to a draw current density of 10 µA/cm2 observed for MoS2-coated 1D ß-TiO2 nanorods emitters is significantly lower than that of doped/undoped 1D TiO2 nanostructures, pristine MoS2 sheets, MoS2@SnO2, and TiO2@MoS2 heterostructure-based field emitters. The orthodoxy test confirms the viability of the field emission measurements, specifically field enhancement factor (ßFE) of the MoS2@TiO2/Si emitters. The enhanced FE behavior of the MoS2@TiO2/Si emitter can be attributed to the modulation of the electronic properties due to heterostructure and interface effects, in addition to the high aspect ratio of the vertically aligned TiO2 nanorods. Furthermore, these MoS2@TiO2/Si emitters exhibit better emission stability. The results obtained herein suggest that the heteroarchitecture of MoS2@ß-TiO2 nanorods holds the potential for their applications in FE-based nanoelectronic devices such as displays and electron sources. Moreover, the strategy employed here to enhance the FE behavior via rational design of heteroarchitecture structure can be further extended to improve other functionalities of various nanomaterials.

SELECTION OF CITATIONS
SEARCH DETAIL
...