Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Science ; 380(6652): 1381-1384, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37384680

ABSTRACT

Quantum scrambling describes the spreading of information into many degrees of freedom in quantum systems, such that the information is no longer accessible locally but becomes distributed throughout the system. This idea can explain how quantum systems become classical and acquire a finite temperature, or how in black holes the information about the matter falling in is seemingly erased. We probe the exponential scrambling of a multiparticle system near a bistable point in phase space and utilize it for entanglement-enhanced metrology. A time-reversal protocol is used to observe a simultaneous exponential growth of both the metrological gain and the out-of-time-order correlator, thereby experimentally verifying the relation between quantum metrology and quantum information scrambling. Our results show that rapid scrambling dynamics capable of exponentially fast entanglement generation are useful for practical metrology, resulting in a 6.8(4)-decibel gain beyond the standard quantum limit.

2.
Phys Rev Lett ; 119(17): 170403, 2017 Oct 27.
Article in English | MEDLINE | ID: mdl-29219453

ABSTRACT

A recent experiment reported the first violation of a Bell correlation witness in a many-body system [Science 352, 441 (2016)]. Following discussions in this Letter, we address here the question of the statistics required to witness Bell correlated states, i.e., states violating a Bell inequality, in such experiments. We start by deriving multipartite Bell inequalities involving an arbitrary number of measurement settings, two outcomes per party and one- and two-body correlators only. Based on these inequalities, we then build up improved witnesses able to detect Bell correlated states in many-body systems using two collective measurements only. These witnesses can potentially detect Bell correlations in states with an arbitrarily low amount of spin squeezing. We then establish an upper bound on the statistics needed to convincingly conclude that a measured state is Bell correlated.

3.
Nat Commun ; 7: ncomms11839, 2016 06 13.
Article in English | MEDLINE | ID: mdl-27291425

ABSTRACT

A precisely controlled quantum system may reveal a fundamental understanding of another, less accessible system of interest. A universal quantum computer is currently out of reach, but an analogue quantum simulator that makes relevant observables, interactions and states of a quantum model accessible could permit insight into complex dynamics. Several platforms have been suggested and proof-of-principle experiments have been conducted. Here, we operate two-dimensional arrays of three trapped ions in individually controlled harmonic wells forming equilateral triangles with side lengths 40 and 80 µm. In our approach, which is scalable to arbitrary two-dimensional lattices, we demonstrate individual control of the electronic and motional degrees of freedom, preparation of a fiducial initial state with ion motion close to the ground state, as well as a tuning of couplings between ions within experimental sequences. Our work paves the way towards a quantum simulator of two-dimensional systems designed at will.

4.
Science ; 352(6284): 441-4, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-27102479

ABSTRACT

Characterizing many-body systems through the quantum correlations between their constituent particles is a major goal of quantum physics. Although entanglement is routinely observed in many systems, we report here the detection of stronger correlations--Bell correlations--between the spins of about 480 atoms in a Bose-Einstein condensate. We derive a Bell correlation witness from a many-particle Bell inequality involving only one- and two-body correlation functions. Our measurement on a spin-squeezed state exceeds the threshold for Bell correlations by 3.8 standard deviations. Our work shows that the strongest possible nonclassical correlations are experimentally accessible in many-body systems and that they can be revealed by collective measurements.

5.
Phys Rev Lett ; 111(14): 143001, 2013 Oct 04.
Article in English | MEDLINE | ID: mdl-24138235

ABSTRACT

We use a small Bose-Einstein condensate on an atom chip as an interferometric scanning probe to map out a microwave field near the chip surface with a few micrometers resolution. With the use of entanglement between the atoms, our interferometer overcomes the standard quantum limit of interferometry by 4 dB and maintains enhanced performance for interrogation times up to 10 ms. This corresponds to a microwave magnetic field sensitivity of 77 pT/√Hz in a probe volume of 20 µm(3). Quantum metrology with entangled atoms is useful in measurements with high spatial resolution, since the atom number in the probe volume is limited by collisional loss. High-resolution measurements of microwave near fields, as demonstrated here, are important for the development of integrated microwave circuits for quantum information processing and applications in communication technology.

6.
Opt Express ; 19(7): 6078-92, 2011 Mar 28.
Article in English | MEDLINE | ID: mdl-21451631

ABSTRACT

Grating cloaks are a variation of dielectric carpet (or ground-plane) cloaks. The latter were introduced by Li and Pendry. In contrast to the numerical work involved in the quasi-conformal carpet cloak, the refractive-index profile of a conformal grating cloak follows a closed and exact analytical form. We have previously mentioned that finite-size conformal grating cloaks may exhibit better cloaking than usual finite-size carpet cloaks. In this paper, we directly visualize their performance using photorealistic ray-tracing simulations. We employ a Newtonian approach that is advantageous compared to conventional ray tracing based on Snell's law. Furthermore, we quantify the achieved cloaking quality by computing the cross-correlations of rendered images. The cross-correlations for the grating cloak are much closer to 100% (i.e., ideal) than those for the Gaussian carpet cloak.


Subject(s)
Models, Theoretical , Refractometry/methods , Computer Simulation , Light , Scattering, Radiation
7.
Opt Express ; 18(23): 24361-7, 2010 Nov 08.
Article in English | MEDLINE | ID: mdl-21164783

ABSTRACT

We introduce a class of conformal versions of the previously introduced quasi-conformal carpet cloak, and show how to construct such conformal cloaks for different cloak shapes. Our method provides exact refractive-index profiles in closed mathematical form for the usual carpet cloak as well as for other shapes. By analyzing their asymptotic behavior, we find that the performance of finite-size cloaks becomes much better for metal shapes with zero average value, e.g., for gratings.

8.
J Phys Chem A ; 114(10): 3391-402, 2010 Mar 18.
Article in English | MEDLINE | ID: mdl-20151690

ABSTRACT

Infrared (IR) laser spectroscopy is used to probe the rotational and vibrational dynamics of the (HCN)(m)-M(n) (M = K, Ca, Sr) complexes, either solvated within or bound to the surface of helium nanodroplets. The IR spectra of the (HCN)(m)-K (m = 1-3), HCN-Sr, and HCN-Ca complexes have the signature of a surface species, similar to the previously reported spectra of HCN-M (M = Na, K, Rb, Cs) [Douberly, G. E.; Miller, R. E. J. Phys. Chem. A 2007, 111, 7292.]. A second band in the HCN-Ca spectrum is assigned to a solvated complex. The relative intensities of the two HCN-Ca bands are droplet size dependent, with the solvated species being favored in larger droplets. IR-IR double resonance spectroscopy is used to probe the interconversion of the two distinct HCN-Ca populations. While only a surface-bound HCN-Sr species is initially produced, CH stretch vibrational excitation results in a population transfer to a solvated state. Complexes containing multiple HCN molecules and one Sr atom are surface-bound, while the nu(1) (HCN)(2)Ca spectrum has both the solvated and surface-bound signatures. All HCN-(Ca,Sr)(n) (n > or = 2) complexes are solvated following cluster formation in the droplet. Density-functional calculations of helium nanodroplets interacting with the HCN-M show surface binding for M = Na with a binding energy of 95 cm(-1). The calculations predict a fully solvated complex for M = Ca. For M = Sr, a 2.2 cm(-1) barrier is predicted between nearly isoenergetic surface binding and solvated states.

9.
Phys Rev Lett ; 102(23): 233002, 2009 Jun 12.
Article in English | MEDLINE | ID: mdl-19658931

ABSTRACT

Trapped ions offer long internal state (spin) coherence times and strong interparticle interactions mediated by the Coulomb force. This makes them interesting candidates for quantum simulation of coupled lattices. To this end, it is desirable to be able to trap ions in arbitrary conformations with precisely controlled local potentials. We provide a general method for optimizing periodic planar radio-frequency electrodes for generating ion trapping potentials with specified trap locations and curvatures above the electrode plane. A linear-programming algorithm guarantees globally optimal electrode shapes that require only a single radio-frequency voltage source for operation. The optimization method produces final electrode shapes that are smooth and exhibit low fragmentation. Such characteristics are desirable for practical fabrication of surface-electrode trap lattices.

10.
J Chem Phys ; 122(10): 104307, 2005 Mar 08.
Article in English | MEDLINE | ID: mdl-15836315

ABSTRACT

The nu(5)+nu(9) spectra of ethylene, C(2)H(4), and its dimer, solvated in helium nanodroplets, have been recorded in the wavelength region near 1.6 microm. The monomer transitions show homogeneous broadening of approximately 0.5 cm(-1), which is interpreted as due to an upper state vibrational relaxation lifetime of approximately 10 ps. Nearly resonant vibrational energy transfer (nu(5)+nu(9)-->2nu(5)) is proposed as the relaxation pathway. The dimer gives a single unresolved absorption feature located 4 cm(-1) to the red of the monomer band origin. The scaling of moments of inertia upon solvation in helium is 1.18 for the monomer and >2.5 for the dimer. In terms of the adiabatic following approximation, this classifies the monomer as a fast rotor and the dimer as a slow rotor.

11.
J Chem Phys ; 121(6): 2701-10, 2004 Aug 08.
Article in English | MEDLINE | ID: mdl-15281871

ABSTRACT

We report spectra of various benzene isotopomers and their dimers in helium nanodroplets in the region of the first Herzberg-Teller allowed vibronic transition 6(0)(1) (1)B(2u)<--(1)A(1g) (the A(0) (0) transition) at approximately 260 nm. Excitation spectra have been recorded using both beam depletion detection and laser-induced fluorescence. Unlike for many larger aromatic molecules, the monomer spectra consist of a single "zero-phonon" line, blueshifted by approximately 30 cm(-1) from the gas phase position. Rotational band simulations show that the moments of inertia of C(6)H(6) in the nanodroplets are at least six-times larger than in the gas phase. The dimer spectra present the same vibronic fine structure (though modestly compressed) as previously observed in the gas phase. The fluorescence lifetime and quantum yield of the dimer are found to be equal to those of the monomer, implying substantial inhibition of excimer formation in the dimer in helium.

SELECTION OF CITATIONS
SEARCH DETAIL
...