Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Ecol Appl ; 33(3): e2816, 2023 04.
Article in English | MEDLINE | ID: mdl-36752658

ABSTRACT

Most research on boreal populations of woodland caribou (Rangifer tarandus caribou) has been conducted in areas of high anthropogenic disturbance. However, a large portion of the species' range overlaps relatively pristine areas primarily affected by natural disturbances, such as wildfire. Climate-driven habitat change is a key concern for the conservation of boreal-dependent species, where management decisions have yet to consider knowledge from multiple ecological domains integrated into a cohesive and spatially explicit forecast of species-specific habitat and demography. We used a novel ecological forecasting framework to provide climate-sensitive projections of habitat and demography for five boreal caribou monitoring areas within the Northwest Territories (NWT), Canada, over 90 years. Importantly, we quantify uncertainty around forecasted mean values. Our results suggest habitat suitability may increase in central and southwest regions of the NWT's Taiga Plains ecozone but decrease in southern and northwestern regions driven by conversion of coniferous to deciduous forests. We do not project that boreal caribou population growth rates will change despite forecasted changes to habitat suitability. Our results emphasize the importance of efforts to protect and restore northern boreal caribou habitat despite climate uncertainty while highlighting expected spatial variations that are important considerations for local people who rely on them. An ability to reproduce previous work, and critical thought when incorporating sources of uncertainty, will be important to refine forecasts, derive management decisions, and improve conservation efficacy for northern species at risk.


Subject(s)
Reindeer , Animals , Humans , Uncertainty , Conservation of Natural Resources/methods , Ecosystem , Forests
2.
PLoS One ; 17(5): e0268236, 2022.
Article in English | MEDLINE | ID: mdl-35533149

ABSTRACT

Large natural disturbances such as insect outbreaks and fire are important processes for biodiversity in forest landscapes. However, few methods exist for incorporating natural disturbances into conservation planning. Intact forest landscapes, such as in the North American boreal forest, can produce large natural disturbance footprints. They also have the potential to support large reserves but size estimates based on natural disturbance are needed to guide reserve design. Historical fire data have been used to estimate minimum dynamic reserves, reserve size estimates based on maintaining natural disturbance dynamics and ensuring resilience to large natural disturbance events. While this has been a significant step towards incorporating natural disturbance into reserve design, managers currently lack guidance on how to apply these concepts in areas where fire is not the dominant natural disturbance. We generalize the minimum dynamic reserve framework to accommodate insect outbreaks and demonstrate the framework in a case study for eastern spruce budworm (Choristoneura fumiferana) in the Canadian boreal forest. Our methods use geospatial analysis to identify minimum dynamic reserves based on a set of spatially explicit initial conditions, and simulation models to test for the maintenance of a set of dynamic conditions over time. We found considerable variability in minimum dynamic reserve size depending on the size of historic budworm disturbance events and the spatial patterns of disturbance-prone vegetation types. The minimum dynamic reserve framework provides an approach for incorporating wide-ranging natural disturbances into biodiversity conservation plans for both pro-active planning in intact landscapes, and reactive planning in more developed regions.


Subject(s)
Fires , Moths , Animals , Canada , Conservation of Natural Resources/methods , Ecosystem , Forests , Taiga
3.
Ecol Evol ; 9(18): 10801-10815, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31624583

ABSTRACT

AIM: The influence of humans on large carnivores, including wolves, is a worldwide conservation concern. In addition, human-caused changes in carnivore density and distribution might have impacts on prey and, indirectly, on vegetation. We therefore tested wolf responses to infrastructure related to natural resource development (i.e., human footprint). LOCATION: Our study provides one of the most extensive assessments of how predators like wolves select habitat in response to various degrees of footprint across boreal ecosystems encompassing over a million square kilometers of Canada. METHODS: We deployed GPS-collars on 172 wolves, monitored movements and used a generalized functional response (GFR) model of resource selection. A functional response in habitat selection occurs when selection varies as a function of the availability of that habitat. GFRs can clarify how human-induced habitat changes are influencing wildlife across large, diverse landscapes. RESULTS: Wolves displayed a functional response to footprint. Wolves were more likely to select forest harvest cutblocks in regions with higher cutblock density (i.e., a positive functional response to high-quality habitats for ungulate prey) and to select for higher road density in regions where road density was high (i.e., a positive functional response to human-created travel routes). Wolves were more likely to use cutblocks in habitats with low road densities, and more likely to use roads in habitats with low cutblock densities, except in winter when wolves were more likely to use roads regardless of cutblock density. MAIN CONCLUSIONS: These interactions suggest that wolves trade-off among human-impacted habitats, and adaptively switch from using roads to facilitate movement (while also risking encounters with humans), to using cutblocks that may have higher ungulate densities. We recommend that conservation managers consider the contextual and interacting effects of footprints when assessing impacts on carnivores. These effects likely have indirect impacts on ecosystems too, including on prey species.

4.
PLoS One ; 13(4): e0195480, 2018.
Article in English | MEDLINE | ID: mdl-29659615

ABSTRACT

Across the boreal forest of Canada, habitat disturbance is the ultimate cause of caribou (Rangifer tarandus caribou) declines. Habitat restoration is a focus of caribou recovery efforts, with a goal to finding ways to reduce predator use of disturbances, and caribou-predator encounters. One of the most pervasive disturbances within caribou ranges in Alberta, Canada are seismic lines cleared for energy exploration. Seismic lines facilitate predator movement, and although vegetation on some seismic lines is regenerating, it remains unknown whether vegetation regrowth is sufficient to alter predator response. We used Light Detection and Ranging (LiDAR) data, and GPS locations, to understand how vegetation and other attributes of seismic lines influence movements of two predators, wolves (Canis lupus) and grizzly bears (Ursus arctos). During winter, wolves moved towards seismic lines regardless of vegetation height, while during spring wolves moved towards seismic lines with higher vegetation. During summer, wolves moved towards seismic lines with lower vegetation and also moved faster near seismic lines with vegetation <0.7 m. Seismic lines with lower vegetation height were preferred by grizzly bears during spring and summer, but there was no relationship between vegetation height and grizzly bear movement rates. These results suggest that wolves use seismic lines for travel during summer, but during winter wolf movements relative to seismic lines could be influenced by factors additional to movement efficiency; potentially enhanced access to areas frequented by ungulate prey. Grizzly bears may be using seismic lines for movement, but could also be using seismic lines as a source of vegetative food or ungulate prey. To reduce wolf movement rate, restoration could focus on seismic lines with vegetation <1 m in height. However our results revealed that seismic lines continue to influence wolf movement behaviour decades after they were built, and even at later stages of regeneration. Therefore it remains unknown at what stage of natural regeneration, if any, wolves cease to respond to seismic lines. To reduce wolf response to seismic lines, active restoration tactics like blocking seismic lines and tree planting, along with management of alternate prey, could be evaluated.


Subject(s)
Ecosystem , Movement , Ursidae , Wolves , Animals , Population Dynamics , Predatory Behavior , Reindeer
5.
Ecol Appl ; 22(4): 1068-83, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22827119

ABSTRACT

Multi-scale resource selection modeling is used to identify factors that limit species distributions across scales of space and time. This multi-scale nature of habitat suitability complicates the translation of inferences to single, spatial depictions of habitat required for conservation of species. We estimated resource selection functions (RSFs) across three scales for a threatened ungulate, woodland caribou (Rangifer tarandus caribou), with two objectives: (1) to infer the relative effects of two forms of anthropogenic disturbance (forestry and linear features) on woodland caribou distributions at multiple scales and (2) to estimate scale-integrated resource selection functions (SRSFs) that synthesize results across scales for management-oriented habitat suitability mapping. We found a previously undocumented scale-specific switch in woodland caribou response to two forms of anthropogenic disturbance. Caribou avoided forestry cut-blocks at broad scales according to first- and second-order RSFs and avoided linear features at fine scales according to third-order RSFs, corroborating predictions developed according to predator-mediated effects of each disturbance type. Additionally, a single SRSF validated as well as each of three single-scale RSFs when estimating habitat suitability across three different spatial scales of prediction. We demonstrate that a single SRSF can be applied to predict relative habitat suitability at both local and landscape scales in support of critical habitat identification and species recovery.


Subject(s)
Ecosystem , Feeding Behavior/physiology , Reindeer/physiology , Alberta , Animals , British Columbia , Demography , Environmental Monitoring , Human Activities
6.
J Wildl Dis ; 48(1): 68-76, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22247375

ABSTRACT

Wild carnivores are often exposed to diseases via contact with peridomestic host species that travel through the wildland-urban interfaces. To determine the antibody prevalences and relationships to human activity for two common canid pathogens, we sampled 99 wolves (Canis lupus) from 2000 to 2008 for antibodies to canine parvovirus (CPV) and canine distemper virus (CDV) in Banff and Jasper National Parks and surrounding areas of the Canadian Rockies. This population was the source for wolves reintroduced into the Northern Rockies of the US. Of 99 wolves sampled, 94 had detectable antibody to CPV (95%), 24 were antibody-positive for CDV (24%), and 24 had antibodies to both pathogens (24%). We tested whether antibody prevalences for CPV and CDV were higher closer to human activity (roads, town sites, First Nation reserves) and as a function of sex and age class. Wolves ≥2 yr old were more likely to be have antibodies to CPV. For CDV, male wolves, wolves ≥2 yr, and those closer to First Nation reserves were more likely to have antibodies. Overall, however, we found minimal support for human influence on antibody prevalence for CDV and CPV. The similarity between our antibody prevalence results and results from recent studies in Yellowstone National Park suggests that at least in the case of CDV, and perhaps CPV, these could be important pathogens with potential effects on wolf populations.


Subject(s)
Antibodies, Viral/blood , Distemper Virus, Canine/immunology , Distemper/epidemiology , Parvoviridae Infections/veterinary , Parvovirus, Canine/immunology , Wolves/virology , Age Factors , Animals , Animals, Wild/virology , Canada/epidemiology , Female , Male , Parvoviridae Infections/epidemiology , Seroepidemiologic Studies , Sex Factors
7.
Ecol Lett ; 11(1): 78-91, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17927771

ABSTRACT

The management of landscapes for biological conservation and ecologically sustainable natural resource use are crucial global issues. Research for over two decades has resulted in a large literature, yet there is little consensus on the applicability or even the existence of general principles or broad considerations that could guide landscape conservation. We assess six major themes in the ecology and conservation of landscapes. We identify 13 important issues that need to be considered in developing approaches to landscape conservation. They include recognizing the importance of landscape mosaics (including the integration of terrestrial and aquatic areas), recognizing interactions between vegetation cover and vegetation configuration, using an appropriate landscape conceptual model, maintaining the capacity to recover from disturbance and managing landscapes in an adaptive framework. These considerations are influenced by landscape context, species assemblages and management goals and do not translate directly into on-the-ground management guidelines but they should be recognized by researchers and resource managers when developing guidelines for specific cases. Two crucial overarching issues are: (i) a clearly articulated vision for landscape conservation and (ii) quantifiable objectives that offer unambiguous signposts for measuring progress.


Subject(s)
Conservation of Natural Resources/methods , Environment , Ecosystem , Models, Biological
8.
Ecol Appl ; 17(7): 1954-66, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17974334

ABSTRACT

Systematic conservation plans have only recently considered the dynamic nature of ecosystems. Methods have been developed to incorporate climate change, population dynamics, and uncertainty in reserve design, but few studies have examined how to account for natural disturbance. Considering natural disturbance in reserve design may be especially important for the world's remaining intact areas, which still experience active natural disturbance regimes. We developed a spatially explicit, dynamic simulation model, CONSERV, which simulates patch dynamics and fire, and used it to evaluate the efficacy of hypothetical reserve networks in northern Canada. We designed six networks based on conventional reserve design methods, with different conservation targets for woodland caribou habitat, high-quality wetlands, vegetation, water bodies, and relative connectedness. We input the six reserve networks into CONSERV and tracked the ability of each to maintain initial conservation targets through time under an active natural disturbance regime. None of the reserve networks maintained all initial targets, and some over-represented certain features, suggesting that both effectiveness and efficiency of reserve design could be improved through use of spatially explicit dynamic simulation during the planning process. Spatial simulation models of landscape dynamics are commonly used in natural resource management, but we provide the first illustration of their potential use for reserve design. Spatial simulation models could be used iteratively to evaluate competing reserve designs and select targets that have a higher likelihood of being maintained through time. Such models could be combined with dynamic planning techniques to develop a general theory for reserve design in an uncertain world.


Subject(s)
Conservation of Natural Resources , Ecosystem , Models, Theoretical , Animals , Computer Simulation , Female , Fires , Northwest Territories , Plants , Reindeer
9.
Conserv Biol ; 21(2): 376-86, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17391188

ABSTRACT

Under article 8-J of the Convention on Biological Diversity, governments must engage indigenous and local communities in the designation and management of protected areas. A better understanding of the relationship between community heritage sites and sites identified to protect conventional conservation features could inform conservation-planning exercises on indigenous lands. We examined the potential overlap between Gwich'in First Nations' (Northwest Territories, Canada) heritage sites and areas independently identified for the protection of conventional conservation targets. We designed nine hypothetical protected-area networks with different targets for woodland caribou (Rangifer tarandus caribou) habitat, high-quality wetland areas, representative vegetation types, water bodies, environmentally significant area, territorial parks, and network aggregation. We compared the spatial overlap of heritage sites to these nine protected-area networks. The degree of spatial overlap (Jaccard similarity) between heritage sites and the protected-area networks with moderate or high aggregation was significantly higher (p < 0.001) than random spatial overlap, whereas the overlap between heritage sites and the protected-area networks with no aggregation was not significant or significantly lower (p < 0.001) than random spatial overlap. Our results suggest that protected-area networks designed to capture conventional conservation features may protect key heritage sites but only if the underlying characteristics of these sites are considered. The Gwich'in heritage sites are highly aggregated and only protected-area networks that had moderate and high aggregation had significant overlap with the heritage sites. We suggest that conventional conservation plans incorporate heritage sites into their design criteria to complement conventional conservation targets and effectively protect indigenous heritage sites.


Subject(s)
Conservation of Natural Resources , Culture , Ecosystem , Models, Theoretical , Geography , Humans , Inuit , Logistic Models , Northwest Territories , Planning Techniques
11.
Conserv Biol ; 20(4): 971-83, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16922214

ABSTRACT

In North American boreal forests, wildfire is the dominant agent of natural disturbance. A natural-disturbance model has therefore been promoted as an ecologically based approach to forest harvesting in these systems. Given accelerating resource demands, fire competes with harvest for timber and there is increasing pressure to salvage naturally burned areas. This creates a management paradox: simultaneous promotion of natural disturbance as a guide to sustainability while salvaging forests that have been naturally disturbed. The major drivers of postfire salvage in Canadian boreal forests are societal perceptions, overallocation of forest resources, and economic and policy incentives, and postfire salvage compromisesforest sustainability by diminishing the role of fire as a critical, natural process. These factors might be reconciled through consideration of fire in resource allocations and application of active adaptive management. We provide novel treatment of the role of burn severity in mediating biotic response by examining its influence on the amount, type, and distribution of live, postfire residual material, and we highlight the role of fire in shaping spatial and temporal patterns in forest biodiversity. Maintenance of natural postfire forests is a critical component of an ecosystem-based approach to forest management in boreal systems. Nevertheless, presentpracticesfocus heavily on expediting removal of timber from burned forests, despite increasing evidence that postfire communities differ markedly from postharvest systems, and there is a mismatch between emerging management models and past management practices. Policies that recognize the critical role of fire in these systems and facilitate enhanced understanding of natural system dynamics in support of development of sustainable management practices are urgently needed.


Subject(s)
Ecosystem , Fires , Forestry/methods , Models, Theoretical , Trees , Biodiversity , Canada , Conservation of Natural Resources/methods , Forestry/legislation & jurisprudence
SELECTION OF CITATIONS
SEARCH DETAIL
...