Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(3)2020 Jan 24.
Article in English | MEDLINE | ID: mdl-31991595

ABSTRACT

The forecasts of local severe storms (LSS) are highly dependent on how well the pre-convection environment is characterized in the numerical weather prediction (NWP) model analysis. The usefulness of the forecasts is highly dependent on how frequently the forecast is updated. Therefore, the data latency is critical for assimilation into regional NWP models for it to be able to assimilate more data within the data cut-off window. These low latency data can be obtained through direct broadcast sites and direct receiving systems. Observing system experiments (OSE) were performed to study the impact of data latency on the LSS forecasts. The experiments assimilated all existing observations including conventional data (from the global telecommunication system, GTS) and satellite sounder radiance data (AMSU-A (The Advanced Microwave Sounding Unit-A), ATMS (Advanced Technology Microwave Sounder), CrIS (Cross-track Infrared Sounder), and IASI (Infrared Atmospheric Sounding Interferometer)). They were carried out in a nested domain with a horizontal resolution of 9 km and 3 km in the weather research and forecasting (WRF) model. The forecast quality scores of the LSS precipitation forecasts were calculated and compared with different data cut-off widows to evaluate the impact of data latency. The results showed that low latency can lead to an improved and positive impact on precipitation and other forecasts, which indicates the potential application of LEO direct broadcast (DB) data in a high-resolution regional NWP for LSS forecasts.

2.
Proc Natl Acad Sci U S A ; 110(45): 18092-7, 2013 Nov 05.
Article in English | MEDLINE | ID: mdl-24145398

ABSTRACT

Large meteors (or superbolides [Ceplecha Z, et al. (1999) Meteoroids 1998:37-54]), although rare in recorded history, give sobering testimony to civilization's inherent vulnerability. A not-so-subtle reminder came on the morning of February 15, 2013, when a large meteoroid hurtled into the Earth's atmosphere, forming a superbolide near the city of Chelyabinsnk, Russia, ∼1,500 km east of Moscow, Russia [Ivanova MA, et al. (2013) Abstracts of the 76th Annual Meeting of the Meteoritical Society, 5366]. The object exploded in the stratosphere, and the ensuing shock wave blasted the city of Chelyabinsk, damaging structures and injuring hundreds. Details of trajectory are important for determining its specific source, the likelihood of future events, and potential mitigation measures. Earth-viewing environmental satellites can assist in these assessments. Here we examine satellite observations of the Chelyabinsk superbolide debris trail, collected within minutes of its entry. Estimates of trajectory are derived from differential views of the significantly parallax-displaced [e.g., Hasler AF (1981) Bull Am Meteor Soc 52:194-212] debris trail. The 282.7 ± 2.3° azimuth of trajectory, 18.5 ± 3.8° slope to the horizontal, and 17.7 ± 0.5 km/s velocity derived from these satellites agree well with parameters inferred from the wealth of surface-based photographs and amateur videos. More importantly, the results demonstrate the general ability of Earth-viewing satellites to provide valuable insight on trajectory reconstruction in the more likely scenario of sparse or nonexistent surface observations.


Subject(s)
Meteoroids , Remote Sensing Technology/methods , Spacecraft , Remote Sensing Technology/instrumentation
3.
Appl Opt ; 46(2): 200-9, 2007 Jan 10.
Article in English | MEDLINE | ID: mdl-17268565

ABSTRACT

Trade-off studies on spectral coverage, signal-to-noise ratio (SNR), and spectral resolution for a hyperspectral infrared (IR) sounder on a geostationary satellite are summarized. The data density method is applied for the vertical resolution analysis, and the rms error between true and retrieved profiles is used to represent the retrieval accuracy. The effects of spectral coverage, SNR, and spectral resolution on vertical resolution and retrieval accuracy are investigated. The advantages of IR and microwave sounder synergy are also demonstrated. When focusing on instrument performance and data processing, the results from this study show that the preferred spectral coverage combines long-wave infrared (LWIR) with the shorter middle-wave IR (SMidW). Using the appropriate spectral coverage, a hyperspectral IR sounder with appropriate SNR can achieve the required science performance (1 km vertical resolution, 1 K temperature, and 10% relative humidity retrieval accuracy). The synergy of microwave and IR sounders can improve the vertical resolution and retrieval accuracy compared to either instrument alone.

SELECTION OF CITATIONS
SEARCH DETAIL
...